Pandas 如果满足条件,Dataframe 会找到第一个出现的地方

Pandas Dataframe find first occurence if condition met

我有以下数据

        timestamp        bucket forward
   0    02/01/2012 08:00    1   2309.6
1156    02/01/2012 08:00    2   2305.9
2320    02/01/2012 08:00    3   2306
3481    02/01/2012 08:00    4   2240.9
4643    02/01/2012 08:00    5   2235.3
5807    02/01/2012 08:00    6   2224.1
6969    02/01/2012 08:00    7   2167.1
   1    02/01/2012 09:00    1   2327.3
1157    02/01/2012 09:00    2   2323.4
2321    02/01/2012 09:00    3   2323.5
3482    02/01/2012 09:00    4   2258.4
4644    02/01/2012 09:00    5   2252.8
5808    02/01/2012 09:00    6   2241.4
6970    02/01/2012 09:00    7   2183.2
   2    02/01/2012 10:00    1   2342.3

如果bucket > previou bucket,我需要找到对应的具有相同时间戳的forward,即:

        timestamp        bucket forward   result
   0    02/01/2012 08:00    1   2309.6    2309.6
1156    02/01/2012 08:00    2   2305.9    2309.6
2320    02/01/2012 08:00    3   2306      2309.6
3481    02/01/2012 08:00    4   2240.9    2309.6
4643    02/01/2012 08:00    5   2235.3    2309.6
5807    02/01/2012 08:00    6   2224.1    2309.6
6969    02/01/2012 08:00    7   2167.1    2309.6
   1    02/01/2012 09:00    1   2327.3    2327.3
1157    02/01/2012 09:00    2   2323.4    2327.3
2321    02/01/2012 09:00    3   2323.5    2327.3
3482    02/01/2012 09:00    4   2258.4    2327.3
4644    02/01/2012 09:00    5   2252.8    2327.3
5808    02/01/2012 09:00    6   2241.4    2327.3
6970    02/01/2012 09:00    7   2183.2    2327.3
   2    02/01/2012 10:00    1   2342.3    2342.3

到目前为止我有:

df['result'] = np.where(df['bucket'].diff()>0, df['forward'].shift(1), df['forward']) 

不确定如何将第一次出现在存储桶部分中。任何指针将不胜感激

您可以使用 diffcumsumbucket 列创建一个组变量,然后使用 [=18 从每个组中获取第一个前向值=]变换:

df['result'] = df.groupby(by = (df.bucket.diff() < 0).cumsum())['forward'].transform('first')
df

这是一种方法。

通过与之前的值比较来填充值,然后 ffill NaN 值。

In [1024]: df['result'] = df.loc[~(df.bucket > df.bucket.shift(1)), 'forward']

In [1025]: df
Out[1025]:
                 timestamp  bucket  forward  result
0    '02/01/2012    08:00'       1   2309.6  2309.6
1156 '02/01/2012    08:00'       2   2305.9     NaN
2320 '02/01/2012    08:00'       3   2306.0     NaN
3481 '02/01/2012    08:00'       4   2240.9     NaN
4643 '02/01/2012    08:00'       5   2235.3     NaN
5807 '02/01/2012    08:00'       6   2224.1     NaN
6969 '02/01/2012    08:00'       7   2167.1     NaN
1    '02/01/2012    09:00'       1   2327.3  2327.3
1157 '02/01/2012    09:00'       2   2323.4     NaN
2321 '02/01/2012    09:00'       3   2323.5     NaN
3482 '02/01/2012    09:00'       4   2258.4     NaN
4644 '02/01/2012    09:00'       5   2252.8     NaN
5808 '02/01/2012    09:00'       6   2241.4     NaN
6970 '02/01/2012    09:00'       7   2183.2     NaN
2    '02/01/2012    10:00'       1   2342.3  2342.3

Forward-fill NaNs

In [1026]: df.result = df.result.ffill()

In [1027]: df
Out[1027]:
                 timestamp  bucket  forward  result
0    '02/01/2012    08:00'       1   2309.6  2309.6
1156 '02/01/2012    08:00'       2   2305.9  2309.6
2320 '02/01/2012    08:00'       3   2306.0  2309.6
3481 '02/01/2012    08:00'       4   2240.9  2309.6
4643 '02/01/2012    08:00'       5   2235.3  2309.6
5807 '02/01/2012    08:00'       6   2224.1  2309.6
6969 '02/01/2012    08:00'       7   2167.1  2309.6
1    '02/01/2012    09:00'       1   2327.3  2327.3
1157 '02/01/2012    09:00'       2   2323.4  2327.3
2321 '02/01/2012    09:00'       3   2323.5  2327.3
3482 '02/01/2012    09:00'       4   2258.4  2327.3
4644 '02/01/2012    09:00'       5   2252.8  2327.3
5808 '02/01/2012    09:00'       6   2241.4  2327.3
6970 '02/01/2012    09:00'       7   2183.2  2327.3
2    '02/01/2012    10:00'       1   2342.3  2342.3