Python 中的逻辑回归和交叉验证(使用 sklearn)

Logistic regression and cross-validation in Python (with sklearn)

我正在尝试通过逻辑回归解决给定数据集上的分类问题(这不是问题所在)。为了避免过度拟合,我试图通过交叉验证来实现它(这就是问题所在):我缺少一些东西来完成这个程序。我在这里的目的是确定准确性

但让我具体一点。这就是我所做的:

  1. 我将集合拆分为训练集和测试集
  2. 我定义了要使用的对数回归预测模型
  3. 我使用 cross_val_predict 方法(在 sklearn.cross_validation 中)进行预测
  4. 最后,我测量了精度

代码如下:

import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.cross_validation import train_test_split
from sklearn import metrics, cross_validation
from sklearn.linear_model import LogisticRegression

# read training data in pandas dataframe
data = pd.read_csv("./dataset.csv", delimiter=';')
# last column is target, store in array t
t = data['TARGET']
# list of features, including target
features = data.columns
# item feature matrix in X
X = data[features[:-1]].as_matrix()
# remove first column because it is not necessary in the analysis
X = np.delete(X,0,axis=1)
# divide in training and test set
X_train, X_test, t_train, t_test = train_test_split(X, t, test_size=0.2, random_state=0)

# define method
logreg=LogisticRegression()

# cross valitadion prediction
predicted = cross_validation.cross_val_predict(logreg, X_train, t_train, cv=10)
print(metrics.accuracy_score(t_train, predicted)) 

我的问题:

奖金问题:我还想执行缩放降维 (通过特征选择或 PCA)在交叉验证的每个步骤中。我怎样才能做到这一点?我已经看到定义管道有助于扩展,但我不知道如何将其应用于第二个问题。

非常感谢任何帮助:-)

这是在示例数据帧上测试的工作代码。您代码中的第一个问题是目标数组不是 np.array。您也不应该在您的功能中包含目标数据。下面我将说明如何使用 train_test_split 手动拆分训练和测试数据。我还展示了如何使用包装器 cross_val_score 自动拆分、拟合和评分。

random.seed(42)
# Create example df with alphabetic col names.
alphabet_cols = list(string.ascii_uppercase)[:26]
df = pd.DataFrame(np.random.randint(1000, size=(1000, 26)),
                  columns=alphabet_cols)
df['Target'] = df['A']
df.drop(['A'], axis=1, inplace=True)
print(df.head())
y = df.Target.values  # df['Target'] is not an np.array.
feature_cols = [i for i in list(df.columns) if i != 'Target']
X = df.ix[:, feature_cols].as_matrix()
# Illustrated here for manual splitting of training and testing data.
X_train, X_test, y_train, y_test = \
    model_selection.train_test_split(X, y, test_size=0.2, random_state=0)

# Initialize model.
logreg = linear_model.LinearRegression()

# Use cross_val_score to automatically split, fit, and score.
scores = model_selection.cross_val_score(logreg, X, y, cv=10)
print(scores)
print('average score: {}'.format(scores.mean()))

输出

     B    C    D    E    F    G    H    I    J    K   ...    Target
0   20   33  451    0  420  657  954  156  200  935   ...    253
1  427  533  801  183  894  822  303  623  455  668   ...    421
2  148  681  339  450  376  482  834   90   82  684   ...    903
3  289  612  472  105  515  845  752  389  532  306   ...    639
4  556  103  132  823  149  974  161  632  153  782   ...    347

[5 rows x 26 columns]
[-0.0367 -0.0874 -0.0094 -0.0469 -0.0279 -0.0694 -0.1002 -0.0399  0.0328
 -0.0409]
average score: -0.04258093018969249

有用的参考资料:

请查看documentation of cross-validation at scikit以进一步了解它。

此外,您使用的 cross_val_predict 不正确。它将做的是在内部调用您提供的 cv (cv=10) 以将提供的数据(即您的情况下的 X_train、t_train)拆分为再次训练和测试,将估计器拟合到训练上并预测保留在测试中的数据。

现在要使用你的 X_testy_test,你应该首先将你的估计器拟合到训练数据上(cross_val_predict 将不拟合),然后用它来预测测试数据,然后计算准确率。

描述上述内容的简单代码片段(借用您的代码)(请阅读评论并询问是否有任何不明白的地方):

# item feature matrix in X
X = data[features[:-1]].as_matrix()
# remove first column because it is not necessary in the analysis
X = np.delete(X,0,axis=1)
# divide in training and test set
X_train, X_test, t_train, t_test = train_test_split(X, t, test_size=0.2, random_state=0)

# Until here everything is good
# You keep away 20% of data for testing (test_size=0.2)
# This test data should be unseen by any of the below methods

# define method
logreg=LogisticRegression()

# Ideally what you are doing here should be correct, until you did anything wrong in dataframe operations (which apparently has been solved)
#cross valitadion prediction
#This cross validation prediction will print the predicted values of 't_train'
predicted = cross_validation.cross_val_predict(logreg, X_train, t_train, cv=10)
# internal working of cross_val_predict:
  #1. Get the data and estimator (logreg, X_train, t_train)
  #2. From here on, we will use X_train as X_cv and t_train as t_cv (because cross_val_predict doesnt know that its our training data) - Doubts??
  #3. Split X_cv, t_cv into X_cv_train, X_cv_test, t_cv_train, t_cv_test by using its internal cv
  #4. Use X_cv_train, t_cv_train for fitting 'logreg' 
  #5. Predict on X_cv_test (No use of t_cv_test)
  #6. Repeat steps 3 to 5 repeatedly for cv=10 iterations, each time using different data for training and different data for testing.

# So here you are correctly comparing 'predicted' and 't_train'
print(metrics.accuracy_score(t_train, predicted)) 

# The above metrics will show you how our estimator 'logreg' works on 'X_train' data. If the accuracies are very high it may be because of overfitting.

# Now what to do about the X_test and t_test above.
# Actually the correct preference for metrics is this X_test and t_train
# If you are satisfied by the accuracies on the training data then you should fit the entire training data to the estimator and then predict on X_test

logreg.fit(X_train, t_train)
t_pred = logreg(X_test)

# Here is the final accuracy
print(metrics.accuracy_score(t_test, t_pred)) 
# If this accuracy is good, then your model is good.

如果您的数据较少或不想将数据拆分为训练和测试,那么您应该使用@fuzzyhedge

建议的方法
# Use cross_val_score on your all data
scores = model_selection.cross_val_score(logreg, X, y, cv=10)

# 'cross_val_score' will almost work same from steps 1 to 4
  #5. t_cv_pred = logreg.predict(X_cv_test) and calculate accuracy with t_cv_test. 
  #6. Repeat steps 1 to 5 for cv_iterations = 10
  #7. Return array of accuracies calculated in step 5.

# Find out average of returned accuracies to see the model performance
scores = scores.mean()

注意 - 此外,cross_validation 最好与 gridsearch 一起使用,以找出对给定数据表现最佳的估计器参数。 例如,使用 LogisticRegression 它定义了许多参数。但是如果你使用

logreg = LogisticRegression() 

将仅使用默认参数初始化模型。也许参数的不同值

logreg = LogisticRegression(penalty='l1', solver='liblinear') 

可能会更好地处理您的数据。这个搜索更好的参数是gridsearch.

现在关于 scaling, dimension reductions etc using pipeline. You can refer to the documentation of pipeline 的第二部分和以下示例:

如果需要任何帮助,请随时与我联系。