如何将经过训练的 h5 格式的 caffe 模型加载到 c++ caffe net?
How to load trained caffe model in h5 format to c++ caffe net?
通常训练的 caffe 模型是 .caffemodel
扩展,实际上它们是 binary protobuf
格式。
知道如何在 C++ 中将 hdf5
格式的 caffe 模型加载到 caffe net 吗?
我有一个用 python caffe 以 hdf5
格式训练的模型。
我的应用程序是在 c++ 中使用 caffe c++ 版本,我更喜欢使用 c++ 而不是 python。
如何将 caffe 训练模型中的 hdf5 格式的模型读取到 c++ caffe net?
我知道caffe里面有hdf5data层。
有相应的示例程序吗?
编辑:
我使用了 CopyTrainedLayersFromHDF5() api 并遇到了以下运行时错误。
HDF5-DIAG: Error detected in HDF5 (1.8.11) thread 140737353775552:
#000: ../../../src/H5G.c line 463 in H5Gopen2(): unable to open group
major: Symbol table
minor: Can't open object
#001: ../../../src/H5Gint.c line 320 in H5G__open_name(): group not found
major: Symbol table
minor: Object not found
#002: ../../../src/H5Gloc.c line 430 in H5G_loc_find(): can't find object
major: Symbol table
minor: Object not found
#003: ../../../src/H5Gtraverse.c line 861 in H5G_traverse(): internal path traversal failed
major: Symbol table
minor: Object not found
#004: ../../../src/H5Gtraverse.c line 641 in H5G_traverse_real(): traversal operator failed
major: Symbol table
minor: Callback failed
#005: ../../../src/H5Gloc.c line 385 in H5G_loc_find_cb(): object 'data' doesn't exist
major: Symbol table
minor: Object not found
F0220 15:32:14.272573 24576 net.cpp:811] Check failed: data_hid >= 0 (-1 vs. 0) Error reading weights from model_800000.h5
*** Check failure stack trace: ***
@ 0x7ffff64afdcd google::LogMessage::Fail()
@ 0x7ffff64b1d08 google::LogMessage::SendToLog()
@ 0x7ffff64af963 google::LogMessage::Flush()
@ 0x7ffff64b263e google::LogMessageFatal::~LogMessageFatal()
@ 0x7ffff691c3a3 caffe::Net<>::CopyTrainedLayersFromHDF5()
@ 0x40828d ExtractFeature::ExtractFeature()
@ 0x40ce78 main
@ 0x7ffff5bf8f45 __libc_start_main
@ 0x4080c9 (unknown)
Program received signal SIGABRT, Aborted.
0x00007ffff5c0dc37 in __GI_raise (sig=sig@entry=6)
at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
56 ../nptl/sysdeps/unix/sysv/linux/raise.c: No such file or directory.
(gdb) cd
[17]+ Stopped gdb ./endtoendlib
编辑 1:
>>h5ls model_800000.h5 command gave me
conv1 Group
conv2 Group
forget_gate Dataset {1, 250, 1, 1274}
inception_3a Group
inception_3b Group
inception_4a Group
inception_4b Group
inception_4c Group
inception_4d Group
inception_4e Group
inception_5a Group
inception_5b Group
input_gate Dataset {1, 250, 1, 1274}
input_value Dataset {1, 250, 1, 1274}
ip_bbox_unscaled0.p0 Dataset {4, 250}
ip_bbox_unscaled0.p1 Dataset {4}
ip_bbox_unscaled1.p0 Dataset {4, 250}
ip_bbox_unscaled1.p1 Dataset {4}
ip_bbox_unscaled2.p0 Dataset {4, 250}
ip_bbox_unscaled2.p1 Dataset {4}
ip_bbox_unscaled3.p0 Dataset {4, 250}
ip_bbox_unscaled3.p1 Dataset {4}
ip_bbox_unscaled4.p0 Dataset {4, 250}
ip_bbox_unscaled4.p1 Dataset {4}
ip_conf0.p0 Dataset {2, 250}
ip_conf0.p1 Dataset {2}
ip_conf1.p0 Dataset {2, 250}
ip_conf1.p1 Dataset {2}
ip_conf2.p0 Dataset {2, 250}
ip_conf2.p1 Dataset {2}
ip_conf3.p0 Dataset {2, 250}
ip_conf3.p1 Dataset {2}
ip_conf4.p0 Dataset {2, 250}
ip_conf4.p1 Dataset {2}
output_gate Dataset {1, 250, 1, 1274}
post_fc7_conv.p0 Dataset {1024, 1024, 1, 1}
post_fc7_conv.p1 Dataset {1024}
您是否考虑过 net
对象方法 void CopyTrainedLayersFromHDF5(const string trained_filename);
?它似乎满足了您的需求。
至于"HDF5Data"
层:你在这里混淆了两件事。您拥有的 hdf5 文件存储了网络的 训练参数 。相比之下,"HDF5Data"
层存储用于训练网络的 训练示例 。
通常训练的 caffe 模型是 .caffemodel
扩展,实际上它们是 binary protobuf
格式。
知道如何在 C++ 中将 hdf5
格式的 caffe 模型加载到 caffe net 吗?
我有一个用 python caffe 以 hdf5
格式训练的模型。
我的应用程序是在 c++ 中使用 caffe c++ 版本,我更喜欢使用 c++ 而不是 python。
如何将 caffe 训练模型中的 hdf5 格式的模型读取到 c++ caffe net?
我知道caffe里面有hdf5data层。 有相应的示例程序吗?
编辑:
我使用了 CopyTrainedLayersFromHDF5() api 并遇到了以下运行时错误。
HDF5-DIAG: Error detected in HDF5 (1.8.11) thread 140737353775552:
#000: ../../../src/H5G.c line 463 in H5Gopen2(): unable to open group
major: Symbol table
minor: Can't open object
#001: ../../../src/H5Gint.c line 320 in H5G__open_name(): group not found
major: Symbol table
minor: Object not found
#002: ../../../src/H5Gloc.c line 430 in H5G_loc_find(): can't find object
major: Symbol table
minor: Object not found
#003: ../../../src/H5Gtraverse.c line 861 in H5G_traverse(): internal path traversal failed
major: Symbol table
minor: Object not found
#004: ../../../src/H5Gtraverse.c line 641 in H5G_traverse_real(): traversal operator failed
major: Symbol table
minor: Callback failed
#005: ../../../src/H5Gloc.c line 385 in H5G_loc_find_cb(): object 'data' doesn't exist
major: Symbol table
minor: Object not found
F0220 15:32:14.272573 24576 net.cpp:811] Check failed: data_hid >= 0 (-1 vs. 0) Error reading weights from model_800000.h5
*** Check failure stack trace: ***
@ 0x7ffff64afdcd google::LogMessage::Fail()
@ 0x7ffff64b1d08 google::LogMessage::SendToLog()
@ 0x7ffff64af963 google::LogMessage::Flush()
@ 0x7ffff64b263e google::LogMessageFatal::~LogMessageFatal()
@ 0x7ffff691c3a3 caffe::Net<>::CopyTrainedLayersFromHDF5()
@ 0x40828d ExtractFeature::ExtractFeature()
@ 0x40ce78 main
@ 0x7ffff5bf8f45 __libc_start_main
@ 0x4080c9 (unknown)
Program received signal SIGABRT, Aborted.
0x00007ffff5c0dc37 in __GI_raise (sig=sig@entry=6)
at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
56 ../nptl/sysdeps/unix/sysv/linux/raise.c: No such file or directory.
(gdb) cd
[17]+ Stopped gdb ./endtoendlib
编辑 1:
>>h5ls model_800000.h5 command gave me
conv1 Group
conv2 Group
forget_gate Dataset {1, 250, 1, 1274}
inception_3a Group
inception_3b Group
inception_4a Group
inception_4b Group
inception_4c Group
inception_4d Group
inception_4e Group
inception_5a Group
inception_5b Group
input_gate Dataset {1, 250, 1, 1274}
input_value Dataset {1, 250, 1, 1274}
ip_bbox_unscaled0.p0 Dataset {4, 250}
ip_bbox_unscaled0.p1 Dataset {4}
ip_bbox_unscaled1.p0 Dataset {4, 250}
ip_bbox_unscaled1.p1 Dataset {4}
ip_bbox_unscaled2.p0 Dataset {4, 250}
ip_bbox_unscaled2.p1 Dataset {4}
ip_bbox_unscaled3.p0 Dataset {4, 250}
ip_bbox_unscaled3.p1 Dataset {4}
ip_bbox_unscaled4.p0 Dataset {4, 250}
ip_bbox_unscaled4.p1 Dataset {4}
ip_conf0.p0 Dataset {2, 250}
ip_conf0.p1 Dataset {2}
ip_conf1.p0 Dataset {2, 250}
ip_conf1.p1 Dataset {2}
ip_conf2.p0 Dataset {2, 250}
ip_conf2.p1 Dataset {2}
ip_conf3.p0 Dataset {2, 250}
ip_conf3.p1 Dataset {2}
ip_conf4.p0 Dataset {2, 250}
ip_conf4.p1 Dataset {2}
output_gate Dataset {1, 250, 1, 1274}
post_fc7_conv.p0 Dataset {1024, 1024, 1, 1}
post_fc7_conv.p1 Dataset {1024}
您是否考虑过 net
对象方法 void CopyTrainedLayersFromHDF5(const string trained_filename);
?它似乎满足了您的需求。
至于"HDF5Data"
层:你在这里混淆了两件事。您拥有的 hdf5 文件存储了网络的 训练参数 。相比之下,"HDF5Data"
层存储用于训练网络的 训练示例 。