如何将 glmer() 调用转换为 lme();并包括用于随机效果的 list()
How to translate glmer() call to lme(); and including list() for random effects
我之前 运行 使用 lme4 包中的 glmer() 进行了混合模型分析。我现在想 运行 使用包 nlme 中的 lme() 进行完全相同的分析。这是因为后续使用的函数需要输出或调用 lme() 混合模型。
随后使用的函数尝试使用函数segmented.lme() 在数据中查找断点。这个函数的代码可以在这里找到:https://www.researchgate.net/publication/292986444_segmented_mixed_models_in_R_code_and_data
之前,我使用了函数:
global.model <- glmer(response ~ predictor1*predictor2*predictor3*predictor4 + covariate1 + covariate2 + covariate3 + (1|block/transect), data=dat, family="gaussian", na.action="na.fail")
有关可重现的示例,请参见下文。
请注意:随机效应是:(1|block/transect) ,即考虑到块与块内横断面之间的交互作用。
现在,我不确定如何重写 lme() 的随机效果部分以与 glmer() 中使用的代码完全匹配,特别是因为 segmented.lme() 似乎需要一个 'list'。我尝试了以下方法:
random = list(block = pdDiag(~ 1 + predictor1))
请注意:我只对 predictor1 数据中的潜在断点感兴趣。
所需软件包:lme4、nlme
这是数据的一个子集:
structure(list(block = structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = c("B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8"), class = "factor"), transect = structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = c("B1L",
"B1M", "B1S", "B2L", "B2M", "B2S", "B3L", "B3M", "B3S", "B4L",
"B4M", "B4S", "B5L", "B5M", "B5S", "B6L", "B6M", "B6S", "B7L",
"B7M", "B7S", "B8L", "B8M", "B8S"), class = "factor"), predictor1 = c(28.63734661,
31.70995133, 27.40407982, 25.48842992, 21.81094637, 24.02032756
), predictor2 = c(5.002945364, 6.85567854, 0, 22.470422,
0, 0), predictor3 = c(3.72, 3.55, 3.66, 3.65, 3.53, 3.66),
predictor4 = c(504.8, 547.6, 499.7, 497.8, 473.8, 467.5),
covariate1 = c(391L, 394L, 351L, 336L, 304L, 335L), covariate2 = c(0.96671086,
2.81939707, 0.899512367, 1.024730094, 1.641161861, 1.419433714
), covariate3 = c(0.787505444, 0.641693911, 0.115804751,
-0.041146951, 1.983567486, -0.451039179), response = c(0.81257636,
0.622662116, 0.490330786, 0.709929461, -0.156398286, -1.185175095
)), .Names = c("block", "transect", "predictor1", "predictor2", "predictor3", "predictor4", "covariate1", "covariate2", "covariate3", "response"), row.names = c(NA, 6L), class = "data.frame")
非常感谢您的任何建议。
我不熟悉 segmented.lme,但如果它的功能与 nlme 相同(问题的开头似乎暗示了这一点),那么您可以按如下方式指定随机效果。
我使用了我自己的一些数据作为示例,因为您的数据集不包含足够的信息来估计模型。您应该能够为自己的数据集推断出所需的模型。
library(lme4)
global.model <- lmer(Schaalscore ~ Leeftijd + (1|SCHOOL/LeerlingID),data = Data_RW5, na.action = "na.exclude")
summary(global.model)
library(nlme)
global.model2 <- lme(Schaalscore ~ Leeftijd, random= list(SCHOOL = ~1, LeerlingID = ~ 1) ,data = Data_RW5, na.action = "na.exclude")
summary(global.model2)
您的模型指示块和样带上的随机截距,其中样带嵌套在块内。我的数据具有相同的结构,但 LeerlingID 嵌套在 SCHOOL 中。我使用 lmer 而不是 glmer(警告消息将向您显示:calling glmer() with family=gaussian (identity link) as a shortcut to lmer() is deprecated; please call lmer() directly
)。但是 lmer 和 glmer 的想法是一样的。输出结果如下:
> summary(global.model)
Linear mixed model fit by REML ['lmerMod']
Formula: Schaalscore ~ Leeftijd + (1 | SCHOOL/LeerlingID)
Data: Data_RW5
REML criterion at convergence: 58562.1
Scaled residuals:
Min 1Q Median 3Q Max
-3.2088 -0.5855 -0.0420 0.5380 4.6893
Random effects:
Groups Name Variance Std.Dev.
LeerlingID:SCHOOL (Intercept) 213.46 14.610
SCHOOL (Intercept) 28.39 5.328
Residual 62.35 7.896
Number of obs: 7798, groups: LeerlingID:SCHOOL, 1384; SCHOOL, 59
Fixed effects:
Estimate Std. Error t value
(Intercept) -89.0261 1.2116 -73.48
Leeftijd 18.3646 0.1081 169.86
Correlation of Fixed Effects:
(Intr)
Leeftijd -0.725
> summary(global.model2)
Linear mixed-effects model fit by REML
Data: Data_RW5
AIC BIC logLik
58572.08 58606.89 -29281.04
Random effects:
Formula: ~1 | SCHOOL
(Intercept)
StdDev: 5.327848
Formula: ~1 | LeerlingID %in% SCHOOL
(Intercept) Residual
StdDev: 14.61033 7.89634
Fixed effects: Schaalscore ~ Leeftijd
Value Std.Error DF t-value p-value
(Intercept) -89.02613 1.2116148 6413 -73.47726 0
Leeftijd 18.36460 0.1081172 6413 169.85827 0
Correlation:
(Intr)
Leeftijd -0.725
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.2087839 -0.5855190 -0.0420062 0.5379625 4.6892515
Number of Observations: 7798
Number of Groups:
SCHOOL LeerlingID %in% SCHOOL
59 1384
您可以看到随机和固定效应估计值相同,'REML criterion at convergence' 等于 -2 * logLik。综上所述,可以指定随机结构为random= list(block= ~1, transect= ~ 1)
得到相同的模型
编辑:pdDiag 是标准 pdMat 类 的一部分,用于指定随机效应的方差-协方差矩阵。您的原始模型仅指定了两个级别的随机拦截,因此 pdDiag 不执行任何操作。如果指定随机斜率和随机截距,pdDiag 会将斜率-截距相关性设置为 0。有关详细信息,请参阅 Bates & Pinheiro (2000)。
我之前 运行 使用 lme4 包中的 glmer() 进行了混合模型分析。我现在想 运行 使用包 nlme 中的 lme() 进行完全相同的分析。这是因为后续使用的函数需要输出或调用 lme() 混合模型。
随后使用的函数尝试使用函数segmented.lme() 在数据中查找断点。这个函数的代码可以在这里找到:https://www.researchgate.net/publication/292986444_segmented_mixed_models_in_R_code_and_data
之前,我使用了函数:
global.model <- glmer(response ~ predictor1*predictor2*predictor3*predictor4 + covariate1 + covariate2 + covariate3 + (1|block/transect), data=dat, family="gaussian", na.action="na.fail")
有关可重现的示例,请参见下文。
请注意:随机效应是:(1|block/transect) ,即考虑到块与块内横断面之间的交互作用。
现在,我不确定如何重写 lme() 的随机效果部分以与 glmer() 中使用的代码完全匹配,特别是因为 segmented.lme() 似乎需要一个 'list'。我尝试了以下方法:
random = list(block = pdDiag(~ 1 + predictor1))
请注意:我只对 predictor1 数据中的潜在断点感兴趣。
所需软件包:lme4、nlme
这是数据的一个子集:
structure(list(block = structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = c("B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8"), class = "factor"), transect = structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = c("B1L",
"B1M", "B1S", "B2L", "B2M", "B2S", "B3L", "B3M", "B3S", "B4L",
"B4M", "B4S", "B5L", "B5M", "B5S", "B6L", "B6M", "B6S", "B7L",
"B7M", "B7S", "B8L", "B8M", "B8S"), class = "factor"), predictor1 = c(28.63734661,
31.70995133, 27.40407982, 25.48842992, 21.81094637, 24.02032756
), predictor2 = c(5.002945364, 6.85567854, 0, 22.470422,
0, 0), predictor3 = c(3.72, 3.55, 3.66, 3.65, 3.53, 3.66),
predictor4 = c(504.8, 547.6, 499.7, 497.8, 473.8, 467.5),
covariate1 = c(391L, 394L, 351L, 336L, 304L, 335L), covariate2 = c(0.96671086,
2.81939707, 0.899512367, 1.024730094, 1.641161861, 1.419433714
), covariate3 = c(0.787505444, 0.641693911, 0.115804751,
-0.041146951, 1.983567486, -0.451039179), response = c(0.81257636,
0.622662116, 0.490330786, 0.709929461, -0.156398286, -1.185175095
)), .Names = c("block", "transect", "predictor1", "predictor2", "predictor3", "predictor4", "covariate1", "covariate2", "covariate3", "response"), row.names = c(NA, 6L), class = "data.frame")
非常感谢您的任何建议。
我不熟悉 segmented.lme,但如果它的功能与 nlme 相同(问题的开头似乎暗示了这一点),那么您可以按如下方式指定随机效果。
我使用了我自己的一些数据作为示例,因为您的数据集不包含足够的信息来估计模型。您应该能够为自己的数据集推断出所需的模型。
library(lme4)
global.model <- lmer(Schaalscore ~ Leeftijd + (1|SCHOOL/LeerlingID),data = Data_RW5, na.action = "na.exclude")
summary(global.model)
library(nlme)
global.model2 <- lme(Schaalscore ~ Leeftijd, random= list(SCHOOL = ~1, LeerlingID = ~ 1) ,data = Data_RW5, na.action = "na.exclude")
summary(global.model2)
您的模型指示块和样带上的随机截距,其中样带嵌套在块内。我的数据具有相同的结构,但 LeerlingID 嵌套在 SCHOOL 中。我使用 lmer 而不是 glmer(警告消息将向您显示:calling glmer() with family=gaussian (identity link) as a shortcut to lmer() is deprecated; please call lmer() directly
)。但是 lmer 和 glmer 的想法是一样的。输出结果如下:
> summary(global.model)
Linear mixed model fit by REML ['lmerMod']
Formula: Schaalscore ~ Leeftijd + (1 | SCHOOL/LeerlingID)
Data: Data_RW5
REML criterion at convergence: 58562.1
Scaled residuals:
Min 1Q Median 3Q Max
-3.2088 -0.5855 -0.0420 0.5380 4.6893
Random effects:
Groups Name Variance Std.Dev.
LeerlingID:SCHOOL (Intercept) 213.46 14.610
SCHOOL (Intercept) 28.39 5.328
Residual 62.35 7.896
Number of obs: 7798, groups: LeerlingID:SCHOOL, 1384; SCHOOL, 59
Fixed effects:
Estimate Std. Error t value
(Intercept) -89.0261 1.2116 -73.48
Leeftijd 18.3646 0.1081 169.86
Correlation of Fixed Effects:
(Intr)
Leeftijd -0.725
> summary(global.model2)
Linear mixed-effects model fit by REML
Data: Data_RW5
AIC BIC logLik
58572.08 58606.89 -29281.04
Random effects:
Formula: ~1 | SCHOOL
(Intercept)
StdDev: 5.327848
Formula: ~1 | LeerlingID %in% SCHOOL
(Intercept) Residual
StdDev: 14.61033 7.89634
Fixed effects: Schaalscore ~ Leeftijd
Value Std.Error DF t-value p-value
(Intercept) -89.02613 1.2116148 6413 -73.47726 0
Leeftijd 18.36460 0.1081172 6413 169.85827 0
Correlation:
(Intr)
Leeftijd -0.725
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.2087839 -0.5855190 -0.0420062 0.5379625 4.6892515
Number of Observations: 7798
Number of Groups:
SCHOOL LeerlingID %in% SCHOOL
59 1384
您可以看到随机和固定效应估计值相同,'REML criterion at convergence' 等于 -2 * logLik。综上所述,可以指定随机结构为random= list(block= ~1, transect= ~ 1)
得到相同的模型
编辑:pdDiag 是标准 pdMat 类 的一部分,用于指定随机效应的方差-协方差矩阵。您的原始模型仅指定了两个级别的随机拦截,因此 pdDiag 不执行任何操作。如果指定随机斜率和随机截距,pdDiag 会将斜率-截距相关性设置为 0。有关详细信息,请参阅 Bates & Pinheiro (2000)。