关于如何在 Scala 中使用随机值向现有 DataFrame 添加新列

About how to add a new column to an existing DataFrame with random values in Scala

我有一个带有镶木地板文件的数据框,我必须添加一个包含一些随机数据的新列,但我需要这些随机数据彼此不同。这是我的实际代码,当前的 spark 版本是 1.5.1-cdh-5.5.2:

val mydf = sqlContext.read.parquet("some.parquet")
// mydf.count()
// 63385686 
mydf.cache

val r = scala.util.Random
import org.apache.spark.sql.functions.udf
def myNextPositiveNumber :String = { (r.nextInt(Integer.MAX_VALUE) + 1 ).toString.concat("D")}
val myFunction = udf(myNextPositiveNumber _)
val myNewDF = mydf.withColumn("myNewColumn",lit(myNextPositiveNumber))

使用此代码,我有以下数据:

scala> myNewDF.select("myNewColumn").show(10,false)
+-----------+
|myNewColumn|
+-----------+
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
+-----------+

udf myNextPositiveNumber 似乎只被调用了一次,不是吗?

更新 确认,只有一个不同的值:

scala> myNewDF.select("myNewColumn").distinct.show(50,false)
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
...

+-----------+                                                                   
|myNewColumn|
+-----------+
|889488717D |
+-----------+

我做错了什么?

更新 2:最后,在@user6910411 的帮助下,我得到了这个代码:

val mydf = sqlContext.read.parquet("some.parquet")
// mydf.count()
// 63385686 
mydf.cache

val r = scala.util.Random

import org.apache.spark.sql.functions.udf

val accum = sc.accumulator(1)

def myNextPositiveNumber():String = {
   accum+=1
   accum.value.toString.concat("D")
}

val myFunction = udf(myNextPositiveNumber _)

val myNewDF = mydf.withColumn("myNewColumn",lit(myNextPositiveNumber))

myNewDF.select("myNewColumn").count

// 63385686

更新 3

实际代码生成的数据是这样的:

scala> mydf.select("myNewColumn").show(5,false)
17/02/22 11:01:57 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
+-----------+
|myNewColumn|
+-----------+
|2D         |
|2D         |
|2D         |
|2D         |
|2D         |
+-----------+
only showing top 5 rows

udf 函数好像只调用了一次,对吧?我需要在该列中添加一个新的随机元素。

更新 4 @user6910411

我有这个增加 id 但它没有连接最终字符的实际代码,这很奇怪。这是我的代码:

import org.apache.spark.sql.functions.udf


val mydf = sqlContext.read.parquet("some.parquet")

mydf.cache

def myNextPositiveNumber():String = monotonically_increasing_id().toString().concat("D")

val myFunction = udf(myNextPositiveNumber _)

val myNewDF = mydf.withColumn("myNewColumn",expr(myNextPositiveNumber))

scala> myNewDF.select("myNewColumn").show(5,false)
17/02/22 12:00:02 WARN Executor: 1 block locks were not released by TID = 1:
[rdd_4_0]
+-----------+
|myNewColumn|
+-----------+
|0          |
|1          |
|2          |
|3          |
|4          |
+-----------+

我需要这样的东西:

+-----------+
|myNewColumn|
+-----------+
|1D         |
|2D         |
|3D         |
|4D         |
+-----------+

火花 >= 2.3

可以使用 asNondeterministic 方法禁用某些优化:

import org.apache.spark.sql.expressions.UserDefinedFunction

val f: UserDefinedFunction = ???
val fNonDeterministic: UserDefinedFunction = f.asNondeterministic

请确保您在使用此选项之前了解保证。

Spark < 2.3

传递给 udf 的函数应该是确定性的(SPARK-20586 可能是个例外)并且空函数调用可以用常量替换。如果您想生成随机数,请使用 built-in 函数之一:

  • rand - 从 U[0.0, 1.0].[=40 生成具有独立同分布 (i.i.d.) 样本的随机列=]
  • randn - 从标准正态分布生成具有独立同分布(i.i.d.)样本的列。

并转换输出以获得所需的分布,例如:

(rand * Integer.MAX_VALUE).cast("bigint").cast("string")

您可以利用monotonically_increasing_id生成随机值。

然后您可以定义一个 UDF 以在将其转换为字符串后将任何字符串追加到其上 monotonically_increasing_id 默认情况下 returns Long。

scala> var df = Seq(("Ron"), ("John"), ("Steve"), ("Brawn"), ("Rock"), ("Rick")).toDF("names")
+-----+
|names|
+-----+
|  Ron|
| John|
|Steve|
|Brawn|
| Rock|
| Rick|
+-----+

scala> val appendD = spark.sqlContext.udf.register("appendD", (s: String) => s.concat("D"))

scala> df = df.withColumn("ID",monotonically_increasing_id).selectExpr("names","cast(ID as String) ID").withColumn("ID",appendD($"ID"))
+-----+---+
|names| ID|
+-----+---+
|  Ron| 0D|
| John| 1D|
|Steve| 2D|
|Brawn| 3D|
| Rock| 4D|
| Rick| 5D|
+-----+---+