在 R 中应用成本函数
Applying Cost Functions in R
我正处于 R 机器学习的初级阶段,我很难相信没有解决不同类型回归算法成本函数的包。例如,如果我想解决逻辑回归的成本函数,手动方法如下:
https://www.r-bloggers.com/logistic-regression-with-r-step-by-step-implementation-part-2/
# Implement Sigmoid function
sigmoid <- function(z)
{
g <- 1/(1+exp(-z))
return(g)
}
#Cost Function
cost <- function(theta)
{
m <- nrow(X)
g <- sigmoid(X%*%theta)
J <- (1/m)*sum((-Y*log(g)) - ((1-Y)*log(1-g)))
return(J)
}
##Intial theta
initial_theta <- rep(0,ncol(X))
#Cost at inital theta
cost(initial_theta)
在 glm 函数中有没有办法自动执行此操作?或者对于我应用的每个算法,我是否需要像这样手动执行?
我们可以使用optim
进行优化或者直接使用glm
set.seed(1)
X <- matrix(rnorm(1000), ncol=10) # some random data
Y <- sample(0:1, 100, replace=TRUE)
# Implement Sigmoid function
sigmoid <- function(z) {
g <- 1/(1+exp(-z))
return(g)
}
cost.glm <- function(theta,X) {
m <- nrow(X)
g <- sigmoid(X%*%theta)
(1/m)*sum((-Y*log(g)) - ((1-Y)*log(1-g)))
}
X1 <- cbind(1, X)
optim(par=rep(0,ncol(X1)), fn = cost.glm, method='CG',
X=X1, control=list(trace=TRUE))
#$par
#[1] -0.067896075 -0.102393236 -0.295101743 0.616223350 0.124031764 0.126735986 -0.029509039 -0.008790282 0.211808300 -0.038330703 -0.210447146
#$value
#[1] 0.6255513
#$counts
#function gradient
# 53 28
glm(Y~X, family=binomial)$coefficients
# (Intercept) X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
#-0.067890451 -0.102411613 -0.295104858 0.616228141 0.124017980 0.126737807 -0.029523206 -0.008790988 0.211810613 -0.038319484 -0.210445717
下图显示了使用 optim
迭代计算的成本和系数如何收敛到使用 glm
计算的成本和系数。
我正处于 R 机器学习的初级阶段,我很难相信没有解决不同类型回归算法成本函数的包。例如,如果我想解决逻辑回归的成本函数,手动方法如下:
https://www.r-bloggers.com/logistic-regression-with-r-step-by-step-implementation-part-2/
# Implement Sigmoid function
sigmoid <- function(z)
{
g <- 1/(1+exp(-z))
return(g)
}
#Cost Function
cost <- function(theta)
{
m <- nrow(X)
g <- sigmoid(X%*%theta)
J <- (1/m)*sum((-Y*log(g)) - ((1-Y)*log(1-g)))
return(J)
}
##Intial theta
initial_theta <- rep(0,ncol(X))
#Cost at inital theta
cost(initial_theta)
在 glm 函数中有没有办法自动执行此操作?或者对于我应用的每个算法,我是否需要像这样手动执行?
我们可以使用optim
进行优化或者直接使用glm
set.seed(1)
X <- matrix(rnorm(1000), ncol=10) # some random data
Y <- sample(0:1, 100, replace=TRUE)
# Implement Sigmoid function
sigmoid <- function(z) {
g <- 1/(1+exp(-z))
return(g)
}
cost.glm <- function(theta,X) {
m <- nrow(X)
g <- sigmoid(X%*%theta)
(1/m)*sum((-Y*log(g)) - ((1-Y)*log(1-g)))
}
X1 <- cbind(1, X)
optim(par=rep(0,ncol(X1)), fn = cost.glm, method='CG',
X=X1, control=list(trace=TRUE))
#$par
#[1] -0.067896075 -0.102393236 -0.295101743 0.616223350 0.124031764 0.126735986 -0.029509039 -0.008790282 0.211808300 -0.038330703 -0.210447146
#$value
#[1] 0.6255513
#$counts
#function gradient
# 53 28
glm(Y~X, family=binomial)$coefficients
# (Intercept) X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
#-0.067890451 -0.102411613 -0.295104858 0.616228141 0.124017980 0.126737807 -0.029523206 -0.008790988 0.211810613 -0.038319484 -0.210445717
下图显示了使用 optim
迭代计算的成本和系数如何收敛到使用 glm
计算的成本和系数。