Tensorflow Argmax:"axis" 和 "dimension" 参数有什么区别?
Tensorflow Argmax: What's the difference between "axis" and "dimension" parameter?
当前版本的 Tensorflow Argmax 未指定 "axis" 和 "dimension" 参数之间的区别。这是official manual中给出的唯一信息:
tf.argmax(input, axis=None, name=None, dimension=None) {#argmax}
Returns the index with the largest value across axes of a tensor.
Args:
input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
axis: A Tensor. Must be one of the following types: int32, int64. int32, 0 <= axis < rank(input). Describes which axis of the input Tensor to reduce across. For vectors, use axis = 0.
name: A name for the operation (optional).
Returns:
A Tensor of type int64.
有人可以澄清一下吗?哪一个才是实际降维的?
TensorFlow 正在过渡到使用 axis
而不是即将弃用的 dimension
:https://www.tensorflow.org/install/migration
当前版本的 Tensorflow Argmax 未指定 "axis" 和 "dimension" 参数之间的区别。这是official manual中给出的唯一信息:
tf.argmax(input, axis=None, name=None, dimension=None) {#argmax}
Returns the index with the largest value across axes of a tensor.
Args:
input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
axis: A Tensor. Must be one of the following types: int32, int64. int32, 0 <= axis < rank(input). Describes which axis of the input Tensor to reduce across. For vectors, use axis = 0.
name: A name for the operation (optional).
Returns:
A Tensor of type int64.
有人可以澄清一下吗?哪一个才是实际降维的?
TensorFlow 正在过渡到使用 axis
而不是即将弃用的 dimension
:https://www.tensorflow.org/install/migration