Docker 从守护进程获取事件时出错:EOF

Docker Error getting events from daemon: EOF


错误报告信息

描述

大家好,在完成 google codelab 之后,Codelabs 我在 Creating bottleneck at /tf_files/bottlenecks/roses/13231224664_4af5293a37.jpg.txt

之后收到错误 ERRO[4334] error getting events from daemon: EOF

更新: 我重新运行它,这出现了 ERRO[53469] error getting events from daemon: EOF

重现问题的步骤: 1. ``` python tensorflow/examples/image_retraining/retrain.py \

--bottleneck_dir=/tf_files/bottlenecks \ --how_many_training_steps 500 \ --model_dir=/tf_files/inception \ --output_graph=/tf_files/retrained_graph.pb \ --output_labels=/tf_files/retrained_labels.txt \ --image_dir /tf_files/flower_photos

```

描述您收到的结果: ERRO[4334] error getting events from daemon: EOF

描述您预期的结果: Finish the retraining

docker version的输出:

Docker version 1.13.1, build 092cba3

docker info的输出:

Containers: 6 Running: 0 Paused: 0 Stopped: 6 Images: 2 Server Version: 1.13.1 Storage Driver: overlay2 Backing Filesystem: extfs Supports d_type: true Native Overlay Diff: true Logging Driver: json-file Cgroup Driver: cgroupfs Plugins: Volume: local Network: bridge host ipvlan macvlan null overlay Swarm: inactive Runtimes: runc Default Runtime: runc Init Binary: docker-init containerd version: aa8187dbd3b7ad67d8e5e3a15115d3eef43a7ed1 runc version: 9df8b306d01f59d3a8029be411de015b7304dd8f init version: 949e6fa Security Options: seccomp Profile: default Kernel Version: 4.9.8-moby Operating System: Alpine Linux v3.5 OSType: linux Architecture: x86_64 CPUs: 2 Total Memory: 1.952 GiB Name: moby ID: UNXQ:IPAT:2ZHG:3443:M7XI:M3FW:W7Q7:G4HV:IKKW:W5TU:72TI:SH3G Docker Root Dir: /var/lib/docker Debug Mode (client): false Debug Mode (server): true File Descriptors: 16 Goroutines: 27 System Time: 2017-02-21T14:43:50.071749826Z EventsListeners: 1 No Proxy: *.local, 169.254/16 Registry: https://index.docker.io/v1/ Experimental: true Insecure Registries: 127.0.0.0/8 Live Restore Enabled: false

其他环境详细信息(AWS、VirtualBox、物理等): OS X 与 python 2.7, 这出现了 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. Thank you so much

解决方案是增加 CPU 大小和 Docker 首选项中的 Ram。