漫画气球检测:如何计算 OpenCV 中矢量 <RotatedRect> 椭圆内的白色像素?
Comic Balloon Detection: How can I count white pixels inside a vector<RotatedRect> Ellipse in OpenCV?
我到处寻找答案,但找不到。
我正在制作一个漫画气球检测程序,我需要找到一个在轮廓内具有特定百分比白色的椭圆(百分比稍后确定),因此我需要计算内部的白色像素轮廓,我不知道如何。
我已经尝试过 countNonZero()
,但是因为它的参数是一个数组,所以它不接受我声明为 vector<RotatedRect>
的 minEllipse[i]
或 contours[i]
。
代码如下:
// Modified version of thresold_callback function
// from http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rotated_ellipses/bounding_rotated_ellipses.html
Mat fittingEllipse(int, void*, Mat inputImage)
{
Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
int numberOfCaptions = 0;
// Detect edges using Threshold
threshold(inputImage, threshold_output, 224, 250, THRESH_BINARY);
findContours(inputImage, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
vector<RotatedRect> minEllipse(contours.size());
Mat drawing = Mat::zeros(inputImage.size(), CV_8UC3);
for (int i = 0; i < contours.size(); i++)
{
if (contours[i].size() > 5)
minEllipse[i] = fitEllipse(Mat(contours[i]));
}
int totalContourSize = 0, whitepixels, blackpixels;
//Draw ellipse/caption
for (int i = 0; i < contours.size(); i++)
{
Scalar color = Scalar(255, 0, 0);
if (minEllipse[i].size.height >= inputImage.rows / 8 && //IJIP-290-libre.pdf
minEllipse[i].size.width >= inputImage.cols / 10 && //IJIP-290-libre.pdf
minEllipse[i].size.height < inputImage.rows / 3 &&
minEllipse[i].size.width < inputImage.cols / 3 &&
(
(minEllipse[i].angle >= 0 && minEllipse[i].angle <= 10) ||
(minEllipse[i].angle >= 80 && minEllipse[i].angle <= 100) ||
(minEllipse[i].angle >= 170 && minEllipse[i].angle <= 190) ||
(minEllipse[i].angle >= 260 && minEllipse[i].angle <= 280) ||
(minEllipse[i].angle >= 350 && minEllipse[i].angle <= 360)
)) {
ellipse(drawing, minEllipse[i], color, -1, 8);
}
}
drawing = binarizeImage(drawing);
return drawing;
} // end of fittingEllipse
Mat CaptionDetection(Mat inputImage){
Mat outputImage, binaryImage, captionDetectImage;
binaryImage = captionDetectImage = binarizeImage(inputImage);
threshold(captionDetectImage, captionDetectImage, 224, 250, 0); //IJIP-290-libre.pdf
GaussianBlur(captionDetectImage, captionDetectImage, Size(9, 9), 0, 0);
captionDetectImage = fittingEllipse(0, 0, captionDetectImage);
//binaryImage = invertImage(binaryImage);
outputImage = inputImage;
for (int i = 0; i < inputImage.rows; i++) {
for (int j = 0; j < inputImage.cols; j++) {
if (captionDetectImage.at<uchar>(i, j) == 0) {
outputImage.at<Vec3b>(i, j)[0] = outputImage.at<Vec3b>(i, j)[1] = outputImage.at<Vec3b>(i, j)[2] = 0;
}
}
}
return outputImage;
} // end of CaptionDetection
非常庞大的 if 语句让我获得漫画气球检测的准确率仅为 53%(更不用说所有错误检测),这就是为什么我需要获得轮廓中白色像素的百分比获得更高的百分比。
编辑:
我想要的输出是整个漫画页面除了漫画气球外都是黑色的,然后计算那里的白色和黑色像素的数量
ONLY 在 CaptionDetection
函数上,我应该计算每个字幕的像素数吗
最终答案
我编辑了用户 Kornel 提供的代码
Mat fittingEllipse(int, void*, Mat inputImage)
{
Mat outputImage;
vector<Vec4i> hierarchy;
int numberOfCaptions = 0;
// Detect edges using Threshold
threshold(inputImage, inputImage, 224, 250, THRESH_BINARY);
findContours(inputImage, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
vector<RotatedRect> minEllipse(contours.size());
for (int i = 0; i < contours.size(); i++)
{
if (contours[i].size() > 5)
minEllipse[i] = fitEllipse(Mat(contours[i]));
}
//Draw ellipse/caption
outputImage = Mat::zeros(inputImage.size(), CV_8UC3);
for (int i = 0; i < contours.size(); i++)
{
Scalar color = Scalar(255, 255, 255);
Mat drawing = Mat::zeros(inputImage.size(), CV_8UC3);
ellipse(drawing, minEllipse[i], color, -1, 8);
drawing = binarizeImage(drawing);
int area = countNonZero(drawing);
if ((area >= 10000 && area <= 40000) &&
(
(minEllipse[i].angle >= 0 && minEllipse[i].angle <= 10) ||
(minEllipse[i].angle >= 80 && minEllipse[i].angle <= 100) ||
(minEllipse[i].angle >= 170 && minEllipse[i].angle <= 190) ||
(minEllipse[i].angle >= 260 && minEllipse[i].angle <= 280) ||
(minEllipse[i].angle >= 350 && minEllipse[i].angle <= 360)
)){
ellipse(outputImage, minEllipse[i], color, -1, 8);
captionMask[captionCount] = drawing;
captionCount++;
}
}
imwrite((string)SAVE_FILE_DEST + "out.jpg", outputImage);
return outputImage;
} // end of fittingEllipse
Mat replaceROIWithOrigImage(Mat inputImg, Mat mask, int k){
Mat outputImage = inputImg;
Mat maskImg = mask;
imwrite((string)SAVE_FILE_DEST + "inputbefore[" + to_string(k) + "].jpg", inputImg);
for (int i = 0; i < inputImg.rows; i++) {
for (int j = 0; j < inputImg.cols; j++) {
if (maskImg.at<uchar>(i, j) == 0) {
inputImg.at<Vec3b>(i, j)[0] = inputImg.at<Vec3b>(i, j)[1] = inputImg.at<Vec3b>(i, j)[2] = 0;
}
}
}
imwrite((string)SAVE_FILE_DEST + "maskafter[" + to_string(k) + "].jpg", inputImg);
return inputImg;
}
Mat CaptionDetection(Mat inputImage){
Mat outputImage, binaryImage, captionDetectImage;
binaryImage = captionDetectImage = binarizeImage(inputImage);
threshold(captionDetectImage, captionDetectImage, 224, 250, 0); //IJIP-290-libre.pdf
GaussianBlur(captionDetectImage, captionDetectImage, Size(9, 9), 0, 0);
captionDetectImage = fittingEllipse(0, 0, captionDetectImage);
for (int i = 0; i < captionCount; i++){
Mat replacedImg = replaceROIWithOrigImage(inputImage.clone(), captionMask[i], i);
int area = countNonZero(binarizeImage(replacedImg));
cout << area << endl;
}
return outputImage;
} // end of CaptionDetection
fittingEllipse()
中的 if 条件稍后将进行编辑以提高准确性。
感谢用户 a-Jays 和 Kornel 的帮助和时间!
假设您有一个旋转的矩形 rRect
,它在您的代码中定义了一个椭圆,就像 minEllipse[i]
一样。
首先,它的面积可以通过闭合公式area = a * b * PI
来估算,其中a
和b
是半长轴和半短轴(1分别为椭圆的长轴和短轴的 ⁄2),所以:
cv::RotatedRect rRect(cv::Point2f(100.0f, 100.0f), cv::Size2f(100.0f, 50.0f), 30.0f);
float area = (rRect.size.width / 2.0f) * (rRect.size.height / 2.0f) * M_PI;
或者更短一点:
float area = (rRect.size.area() / 4.0f) * M_PI;
或者,您可以通过 cv::ellipse()
将其简单地绘制在遮罩上,即:
cv::Mat mask = cv::Mat::zeros(200, 200, CV_8UC1);
cv::ellipse(mask, rRect, cv::Scalar::all(255), -1);
并且您照常计算非零元素:
int area = cv::countNonZero(mask);
我到处寻找答案,但找不到。
我正在制作一个漫画气球检测程序,我需要找到一个在轮廓内具有特定百分比白色的椭圆(百分比稍后确定),因此我需要计算内部的白色像素轮廓,我不知道如何。
我已经尝试过 countNonZero()
,但是因为它的参数是一个数组,所以它不接受我声明为 vector<RotatedRect>
的 minEllipse[i]
或 contours[i]
。
代码如下:
// Modified version of thresold_callback function
// from http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rotated_ellipses/bounding_rotated_ellipses.html
Mat fittingEllipse(int, void*, Mat inputImage)
{
Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
int numberOfCaptions = 0;
// Detect edges using Threshold
threshold(inputImage, threshold_output, 224, 250, THRESH_BINARY);
findContours(inputImage, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
vector<RotatedRect> minEllipse(contours.size());
Mat drawing = Mat::zeros(inputImage.size(), CV_8UC3);
for (int i = 0; i < contours.size(); i++)
{
if (contours[i].size() > 5)
minEllipse[i] = fitEllipse(Mat(contours[i]));
}
int totalContourSize = 0, whitepixels, blackpixels;
//Draw ellipse/caption
for (int i = 0; i < contours.size(); i++)
{
Scalar color = Scalar(255, 0, 0);
if (minEllipse[i].size.height >= inputImage.rows / 8 && //IJIP-290-libre.pdf
minEllipse[i].size.width >= inputImage.cols / 10 && //IJIP-290-libre.pdf
minEllipse[i].size.height < inputImage.rows / 3 &&
minEllipse[i].size.width < inputImage.cols / 3 &&
(
(minEllipse[i].angle >= 0 && minEllipse[i].angle <= 10) ||
(minEllipse[i].angle >= 80 && minEllipse[i].angle <= 100) ||
(minEllipse[i].angle >= 170 && minEllipse[i].angle <= 190) ||
(minEllipse[i].angle >= 260 && minEllipse[i].angle <= 280) ||
(minEllipse[i].angle >= 350 && minEllipse[i].angle <= 360)
)) {
ellipse(drawing, minEllipse[i], color, -1, 8);
}
}
drawing = binarizeImage(drawing);
return drawing;
} // end of fittingEllipse
Mat CaptionDetection(Mat inputImage){
Mat outputImage, binaryImage, captionDetectImage;
binaryImage = captionDetectImage = binarizeImage(inputImage);
threshold(captionDetectImage, captionDetectImage, 224, 250, 0); //IJIP-290-libre.pdf
GaussianBlur(captionDetectImage, captionDetectImage, Size(9, 9), 0, 0);
captionDetectImage = fittingEllipse(0, 0, captionDetectImage);
//binaryImage = invertImage(binaryImage);
outputImage = inputImage;
for (int i = 0; i < inputImage.rows; i++) {
for (int j = 0; j < inputImage.cols; j++) {
if (captionDetectImage.at<uchar>(i, j) == 0) {
outputImage.at<Vec3b>(i, j)[0] = outputImage.at<Vec3b>(i, j)[1] = outputImage.at<Vec3b>(i, j)[2] = 0;
}
}
}
return outputImage;
} // end of CaptionDetection
非常庞大的 if 语句让我获得漫画气球检测的准确率仅为 53%(更不用说所有错误检测),这就是为什么我需要获得轮廓中白色像素的百分比获得更高的百分比。
编辑:
我想要的输出是整个漫画页面除了漫画气球外都是黑色的,然后计算那里的白色和黑色像素的数量
ONLY 在 CaptionDetection
函数上,我应该计算每个字幕的像素数吗
最终答案
我编辑了用户 Kornel 提供的代码
Mat fittingEllipse(int, void*, Mat inputImage)
{
Mat outputImage;
vector<Vec4i> hierarchy;
int numberOfCaptions = 0;
// Detect edges using Threshold
threshold(inputImage, inputImage, 224, 250, THRESH_BINARY);
findContours(inputImage, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
vector<RotatedRect> minEllipse(contours.size());
for (int i = 0; i < contours.size(); i++)
{
if (contours[i].size() > 5)
minEllipse[i] = fitEllipse(Mat(contours[i]));
}
//Draw ellipse/caption
outputImage = Mat::zeros(inputImage.size(), CV_8UC3);
for (int i = 0; i < contours.size(); i++)
{
Scalar color = Scalar(255, 255, 255);
Mat drawing = Mat::zeros(inputImage.size(), CV_8UC3);
ellipse(drawing, minEllipse[i], color, -1, 8);
drawing = binarizeImage(drawing);
int area = countNonZero(drawing);
if ((area >= 10000 && area <= 40000) &&
(
(minEllipse[i].angle >= 0 && minEllipse[i].angle <= 10) ||
(minEllipse[i].angle >= 80 && minEllipse[i].angle <= 100) ||
(minEllipse[i].angle >= 170 && minEllipse[i].angle <= 190) ||
(minEllipse[i].angle >= 260 && minEllipse[i].angle <= 280) ||
(minEllipse[i].angle >= 350 && minEllipse[i].angle <= 360)
)){
ellipse(outputImage, minEllipse[i], color, -1, 8);
captionMask[captionCount] = drawing;
captionCount++;
}
}
imwrite((string)SAVE_FILE_DEST + "out.jpg", outputImage);
return outputImage;
} // end of fittingEllipse
Mat replaceROIWithOrigImage(Mat inputImg, Mat mask, int k){
Mat outputImage = inputImg;
Mat maskImg = mask;
imwrite((string)SAVE_FILE_DEST + "inputbefore[" + to_string(k) + "].jpg", inputImg);
for (int i = 0; i < inputImg.rows; i++) {
for (int j = 0; j < inputImg.cols; j++) {
if (maskImg.at<uchar>(i, j) == 0) {
inputImg.at<Vec3b>(i, j)[0] = inputImg.at<Vec3b>(i, j)[1] = inputImg.at<Vec3b>(i, j)[2] = 0;
}
}
}
imwrite((string)SAVE_FILE_DEST + "maskafter[" + to_string(k) + "].jpg", inputImg);
return inputImg;
}
Mat CaptionDetection(Mat inputImage){
Mat outputImage, binaryImage, captionDetectImage;
binaryImage = captionDetectImage = binarizeImage(inputImage);
threshold(captionDetectImage, captionDetectImage, 224, 250, 0); //IJIP-290-libre.pdf
GaussianBlur(captionDetectImage, captionDetectImage, Size(9, 9), 0, 0);
captionDetectImage = fittingEllipse(0, 0, captionDetectImage);
for (int i = 0; i < captionCount; i++){
Mat replacedImg = replaceROIWithOrigImage(inputImage.clone(), captionMask[i], i);
int area = countNonZero(binarizeImage(replacedImg));
cout << area << endl;
}
return outputImage;
} // end of CaptionDetection
fittingEllipse()
中的 if 条件稍后将进行编辑以提高准确性。
感谢用户 a-Jays 和 Kornel 的帮助和时间!
假设您有一个旋转的矩形 rRect
,它在您的代码中定义了一个椭圆,就像 minEllipse[i]
一样。
首先,它的面积可以通过闭合公式area = a * b * PI
来估算,其中a
和b
是半长轴和半短轴(1分别为椭圆的长轴和短轴的 ⁄2),所以:
cv::RotatedRect rRect(cv::Point2f(100.0f, 100.0f), cv::Size2f(100.0f, 50.0f), 30.0f);
float area = (rRect.size.width / 2.0f) * (rRect.size.height / 2.0f) * M_PI;
或者更短一点:
float area = (rRect.size.area() / 4.0f) * M_PI;
或者,您可以通过 cv::ellipse()
将其简单地绘制在遮罩上,即:
cv::Mat mask = cv::Mat::zeros(200, 200, CV_8UC1);
cv::ellipse(mask, rRect, cv::Scalar::all(255), -1);
并且您照常计算非零元素:
int area = cv::countNonZero(mask);