如何使用 Tensorflow 张量设置 Keras 层的输入?
How to set the input of a Keras layer with a Tensorflow tensor?
在我的, I used Keras' Layer.set_input()
to connect my Tensorflow pre-processing output tensor to my Keras model's input. However, this method has been removed之后的Keras版本1.1.1
。
如何在较新的 Keras 版本中实现这一点?
示例:
# Tensorflow pre-processing
raw_input = tf.placeholder(tf.string)
### some TF operations on raw_input ###
tf_embedding_input = ... # pre-processing output tensor
# Keras model
model = Sequential()
e = Embedding(max_features, 128, input_length=maxlen)
### THIS DOESN'T WORK ANYMORE ###
e.set_input(tf_embedding_input)
################################
model.add(e)
model.add(LSTM(128, activation='sigmoid'))
model.add(Dense(num_classes, activation='softmax'))
完成预处理后,您可以通过调用 Input
的 tensor
参数将张量添加为输入层
所以在你的情况下:
tf_embedding_input = ... # pre-processing output tensor
# Keras model
model = Sequential()
model.add(Input(tensor=tf_embedding_input))
model.add(Embedding(max_features, 128, input_length=maxlen))
在我的Layer.set_input()
to connect my Tensorflow pre-processing output tensor to my Keras model's input. However, this method has been removed之后的Keras版本1.1.1
。
如何在较新的 Keras 版本中实现这一点?
示例:
# Tensorflow pre-processing
raw_input = tf.placeholder(tf.string)
### some TF operations on raw_input ###
tf_embedding_input = ... # pre-processing output tensor
# Keras model
model = Sequential()
e = Embedding(max_features, 128, input_length=maxlen)
### THIS DOESN'T WORK ANYMORE ###
e.set_input(tf_embedding_input)
################################
model.add(e)
model.add(LSTM(128, activation='sigmoid'))
model.add(Dense(num_classes, activation='softmax'))
完成预处理后,您可以通过调用 Input
tensor
参数将张量添加为输入层
所以在你的情况下:
tf_embedding_input = ... # pre-processing output tensor
# Keras model
model = Sequential()
model.add(Input(tensor=tf_embedding_input))
model.add(Embedding(max_features, 128, input_length=maxlen))