为什么会出现 Spark 1.6.2 RPC Error 信息?
Why does Spark 1.6.2 RPC Error message occur?
我的脚本是用 python 编写的,它在没有 docker 环境的 DSE 4.8 上运行良好。现在我升级到 DSE 5.0.4 并在 docker 环境中 运行 它,现在我收到以下 RPC 错误。在我使用 DSE Spark 版本 1.4.1 之前,我现在使用的是 1.6.2.
主机OSCentos 7.2和DockerOS是一样的。我们使用 spark 提交任务,我们尝试给执行程序 2G、4G、6G 和 8G,它们都给出相同的错误消息。
相同的 python 脚本 运行 在我以前的环境中没有问题,但现在我更新了它不能正常工作。
对于scala操作,代码运行在当前环境下是正常的,只有python部分有问题。重置主机仍未解决问题。重新创建 docker 容器也无助于解决问题。
编辑:
可能我的Mapreduce函数太复杂了。问题可能在这里,但不确定。
环境规格:
集群由6台主机组成,每台主机16核CPU,32G内存,500G SSD。
知道如何解决这个问题吗?还有这个错误信息是什么意思?非常感谢!如果您需要更多信息,请告诉我。
错误日志:
Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
WARN 2017-02-26 10:14:08,314 org.apache.spark.scheduler.TaskSetManager: Lost task 47.1 in stage 88.0 (TID 9705, 139.196.190.79): TaskKilled (killed intentionally)
Traceback (most recent call last):
File "/data/user_profile/User_profile_step1_classify_articles_common_sc_collect.py", line 1116, in <module>
compute_each_dimension_and_format_user(article_by_top_all_tmp)
File "/data/user_profile/User_profile_step1_classify_articles_common_sc_collect.py", line 752, in compute_each_dimension_and_format_user
sqlContext.createDataFrame(article_up_save_rdd, df_schema).write.format('org.apache.spark.sql.cassandra').options(keyspace='archive', table='articles_up_update').save(mode='append')
File "/opt/dse-5.0.4/resources/spark/python/lib/pyspark.zip/pyspark/sql/readwriter.py", line 395, in save
WARN 2017-02-26 10:14:08,336 org.apache.spark.scheduler.TaskSetManager: Lost task 63.1 in stage 88.0 (TID 9704, 139.196.190.79): TaskKilled (killed intentionally)
File "/opt/dse-5.0.4/resources/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py", line 813, in __call__
File "/opt/dse-5.0.4/resources/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 45, in deco
File "/opt/dse-5.0.4/resources/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py", line 308, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o795.save.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 619 in stage 88.0 failed 4 times, most recent failure: Lost task 619.3 in stage 88.0 (TID 9746, 139.196.107.73): ExecutorLostFailure (executor 59 exited caused by one of the running tasks) Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1419)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1418)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$han
Docker 命令:
docker run -d --net=host -i --privileged \
-e SEEDS=10.XX.XXx.XX 1,10.XX.XXx.XXX \
-e CLUSTER_NAME="MyCluster" \
-e LISTEN_ADDRESS=10.XX.XXx.XX \
-e BROADCAST_RPC_ADDRESS=139.XXX.XXX.XXX \
-e RPC_ADDRESS=0.0.0.0 \
-e STOMP_INTERFACE=10.XX.XXx.XX \
-e HOSTS=139.XX.XXx.XX \
-v /data/dse/lib/cassandra:/var/lib/cassandra \
-v /data/dse/lib/spark:/var/lib/spark \
-v /data/dse/log/cassandra:/var/log/cassandra \
-v /data/dse/log/spark:/var/log/spark \
-v /data/agent/log:/opt/datastax-agent/log \
--name dse_container registry..xxx.com/rechao/dse:5.0.4 -s
docker没问题,主机内存增加到64G可以解决这个问题。
我的脚本是用 python 编写的,它在没有 docker 环境的 DSE 4.8 上运行良好。现在我升级到 DSE 5.0.4 并在 docker 环境中 运行 它,现在我收到以下 RPC 错误。在我使用 DSE Spark 版本 1.4.1 之前,我现在使用的是 1.6.2.
主机OSCentos 7.2和DockerOS是一样的。我们使用 spark 提交任务,我们尝试给执行程序 2G、4G、6G 和 8G,它们都给出相同的错误消息。
相同的 python 脚本 运行 在我以前的环境中没有问题,但现在我更新了它不能正常工作。
对于scala操作,代码运行在当前环境下是正常的,只有python部分有问题。重置主机仍未解决问题。重新创建 docker 容器也无助于解决问题。
编辑:
可能我的Mapreduce函数太复杂了。问题可能在这里,但不确定。
环境规格: 集群由6台主机组成,每台主机16核CPU,32G内存,500G SSD。
知道如何解决这个问题吗?还有这个错误信息是什么意思?非常感谢!如果您需要更多信息,请告诉我。
错误日志:
Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
WARN 2017-02-26 10:14:08,314 org.apache.spark.scheduler.TaskSetManager: Lost task 47.1 in stage 88.0 (TID 9705, 139.196.190.79): TaskKilled (killed intentionally)
Traceback (most recent call last):
File "/data/user_profile/User_profile_step1_classify_articles_common_sc_collect.py", line 1116, in <module>
compute_each_dimension_and_format_user(article_by_top_all_tmp)
File "/data/user_profile/User_profile_step1_classify_articles_common_sc_collect.py", line 752, in compute_each_dimension_and_format_user
sqlContext.createDataFrame(article_up_save_rdd, df_schema).write.format('org.apache.spark.sql.cassandra').options(keyspace='archive', table='articles_up_update').save(mode='append')
File "/opt/dse-5.0.4/resources/spark/python/lib/pyspark.zip/pyspark/sql/readwriter.py", line 395, in save
WARN 2017-02-26 10:14:08,336 org.apache.spark.scheduler.TaskSetManager: Lost task 63.1 in stage 88.0 (TID 9704, 139.196.190.79): TaskKilled (killed intentionally)
File "/opt/dse-5.0.4/resources/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py", line 813, in __call__
File "/opt/dse-5.0.4/resources/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 45, in deco
File "/opt/dse-5.0.4/resources/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py", line 308, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o795.save.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 619 in stage 88.0 failed 4 times, most recent failure: Lost task 619.3 in stage 88.0 (TID 9746, 139.196.107.73): ExecutorLostFailure (executor 59 exited caused by one of the running tasks) Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1419)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1418)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$han
Docker 命令:
docker run -d --net=host -i --privileged \
-e SEEDS=10.XX.XXx.XX 1,10.XX.XXx.XXX \
-e CLUSTER_NAME="MyCluster" \
-e LISTEN_ADDRESS=10.XX.XXx.XX \
-e BROADCAST_RPC_ADDRESS=139.XXX.XXX.XXX \
-e RPC_ADDRESS=0.0.0.0 \
-e STOMP_INTERFACE=10.XX.XXx.XX \
-e HOSTS=139.XX.XXx.XX \
-v /data/dse/lib/cassandra:/var/lib/cassandra \
-v /data/dse/lib/spark:/var/lib/spark \
-v /data/dse/log/cassandra:/var/log/cassandra \
-v /data/dse/log/spark:/var/log/spark \
-v /data/agent/log:/opt/datastax-agent/log \
--name dse_container registry..xxx.com/rechao/dse:5.0.4 -s
docker没问题,主机内存增加到64G可以解决这个问题。