pytorch中的模型总结

Model summary in pytorch

如何像 Keras 中的 model.summary() 方法一样在 PyTorch 中打印模型的摘要:

Model Summary:
____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 1, 15, 27)     0                                            
____________________________________________________________________________________________________
convolution2d_1 (Convolution2D)  (None, 8, 15, 27)     872         input_1[0][0]                    
____________________________________________________________________________________________________
maxpooling2d_1 (MaxPooling2D)    (None, 8, 7, 27)      0           convolution2d_1[0][0]            
____________________________________________________________________________________________________
flatten_1 (Flatten)              (None, 1512)          0           maxpooling2d_1[0][0]             
____________________________________________________________________________________________________
dense_1 (Dense)                  (None, 1)             1513        flatten_1[0][0]                  
====================================================================================================
Total params: 2,385
Trainable params: 2,385
Non-trainable params: 0

虽然您不会像 Keras 中那样获得有关模型的详细信息 model.summary,但只需打印模型即可让您了解所涉及的不同层及其规范。

例如:

from torchvision import models
model = models.vgg16()
print(model)

这种情况下的输出如下:

VGG (
  (features): Sequential (
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU (inplace)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU (inplace)
    (4): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU (inplace)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU (inplace)
    (9): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU (inplace)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU (inplace)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU (inplace)
    (16): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU (inplace)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU (inplace)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU (inplace)
    (23): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU (inplace)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU (inplace)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU (inplace)
    (30): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
  )
  (classifier): Sequential (
    (0): Dropout (p = 0.5)
    (1): Linear (25088 -> 4096)
    (2): ReLU (inplace)
    (3): Dropout (p = 0.5)
    (4): Linear (4096 -> 4096)
    (5): ReLU (inplace)
    (6): Linear (4096 -> 1000)
  )
)

现在您可以像 Kashyap 提到的那样,使用 state_dict 方法来获取不同层的权重。但是使用这个层列表可能会提供更多的方向是创建一个辅助函数来获得像模型摘要这样的 Keras!希望这对您有所帮助!

这将显示模型的权重和参数(但不显示输出形状)。

from torch.nn.modules.module import _addindent
import torch
import numpy as np
def torch_summarize(model, show_weights=True, show_parameters=True):
    """Summarizes torch model by showing trainable parameters and weights."""
    tmpstr = model.__class__.__name__ + ' (\n'
    for key, module in model._modules.items():
        # if it contains layers let call it recursively to get params and weights
        if type(module) in [
            torch.nn.modules.container.Container,
            torch.nn.modules.container.Sequential
        ]:
            modstr = torch_summarize(module)
        else:
            modstr = module.__repr__()
        modstr = _addindent(modstr, 2)

        params = sum([np.prod(p.size()) for p in module.parameters()])
        weights = tuple([tuple(p.size()) for p in module.parameters()])

        tmpstr += '  (' + key + '): ' + modstr 
        if show_weights:
            tmpstr += ', weights={}'.format(weights)
        if show_parameters:
            tmpstr +=  ', parameters={}'.format(params)
        tmpstr += '\n'   

    tmpstr = tmpstr + ')'
    return tmpstr

# Test
import torchvision.models as models
model = models.alexnet()
print(torch_summarize(model))

# # Output
# AlexNet (
#   (features): Sequential (
#     (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)), weights=((64, 3, 11, 11), (64,)), parameters=23296
#     (1): ReLU (inplace), weights=(), parameters=0
#     (2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
#     (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)), weights=((192, 64, 5, 5), (192,)), parameters=307392
#     (4): ReLU (inplace), weights=(), parameters=0
#     (5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
#     (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((384, 192, 3, 3), (384,)), parameters=663936
#     (7): ReLU (inplace), weights=(), parameters=0
#     (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((256, 384, 3, 3), (256,)), parameters=884992
#     (9): ReLU (inplace), weights=(), parameters=0
#     (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((256, 256, 3, 3), (256,)), parameters=590080
#     (11): ReLU (inplace), weights=(), parameters=0
#     (12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
#   ), weights=((64, 3, 11, 11), (64,), (192, 64, 5, 5), (192,), (384, 192, 3, 3), (384,), (256, 384, 3, 3), (256,), (256, 256, 3, 3), (256,)), parameters=2469696
#   (classifier): Sequential (
#     (0): Dropout (p = 0.5), weights=(), parameters=0
#     (1): Linear (9216 -> 4096), weights=((4096, 9216), (4096,)), parameters=37752832
#     (2): ReLU (inplace), weights=(), parameters=0
#     (3): Dropout (p = 0.5), weights=(), parameters=0
#     (4): Linear (4096 -> 4096), weights=((4096, 4096), (4096,)), parameters=16781312
#     (5): ReLU (inplace), weights=(), parameters=0
#     (6): Linear (4096 -> 1000), weights=((1000, 4096), (1000,)), parameters=4097000
#   ), weights=((4096, 9216), (4096,), (4096, 4096), (4096,), (1000, 4096), (1000,)), parameters=58631144
# )

编辑:isaykatsman 有一个 pytorch PR 添加一个 model.summary() 与 keras https://github.com/pytorch/pytorch/pull/3043/files

完全一样

最容易记住(不如 Keras 漂亮):

print(model)

这也有效:

repr(model)

如果你只是想要参数个数:

sum([param.nelement() for param in model.parameters()])

发件人:Is there similar pytorch function as model.summary() as keras? (forum.PyTorch.org)

是的,您可以获得精确的 Keras 表示,使用 pytorch-summary 包。

VGG16 示例:

from torchvision import models
from torchsummary import summary

vgg = models.vgg16()
summary(vgg, (3, 224, 224))

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 224, 224]           1,792
              ReLU-2         [-1, 64, 224, 224]               0
            Conv2d-3         [-1, 64, 224, 224]          36,928
              ReLU-4         [-1, 64, 224, 224]               0
         MaxPool2d-5         [-1, 64, 112, 112]               0
            Conv2d-6        [-1, 128, 112, 112]          73,856
              ReLU-7        [-1, 128, 112, 112]               0
            Conv2d-8        [-1, 128, 112, 112]         147,584
              ReLU-9        [-1, 128, 112, 112]               0
        MaxPool2d-10          [-1, 128, 56, 56]               0
           Conv2d-11          [-1, 256, 56, 56]         295,168
             ReLU-12          [-1, 256, 56, 56]               0
           Conv2d-13          [-1, 256, 56, 56]         590,080
             ReLU-14          [-1, 256, 56, 56]               0
           Conv2d-15          [-1, 256, 56, 56]         590,080
             ReLU-16          [-1, 256, 56, 56]               0
        MaxPool2d-17          [-1, 256, 28, 28]               0
           Conv2d-18          [-1, 512, 28, 28]       1,180,160
             ReLU-19          [-1, 512, 28, 28]               0
           Conv2d-20          [-1, 512, 28, 28]       2,359,808
             ReLU-21          [-1, 512, 28, 28]               0
           Conv2d-22          [-1, 512, 28, 28]       2,359,808
             ReLU-23          [-1, 512, 28, 28]               0
        MaxPool2d-24          [-1, 512, 14, 14]               0
           Conv2d-25          [-1, 512, 14, 14]       2,359,808
             ReLU-26          [-1, 512, 14, 14]               0
           Conv2d-27          [-1, 512, 14, 14]       2,359,808
             ReLU-28          [-1, 512, 14, 14]               0
           Conv2d-29          [-1, 512, 14, 14]       2,359,808
             ReLU-30          [-1, 512, 14, 14]               0
        MaxPool2d-31            [-1, 512, 7, 7]               0
           Linear-32                 [-1, 4096]     102,764,544
             ReLU-33                 [-1, 4096]               0
          Dropout-34                 [-1, 4096]               0
           Linear-35                 [-1, 4096]      16,781,312
             ReLU-36                 [-1, 4096]               0
          Dropout-37                 [-1, 4096]               0
           Linear-38                 [-1, 1000]       4,097,000
================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.59
Params size (MB): 527.79
Estimated Total Size (MB): 746.96
----------------------------------------------------------------

为模型定义对象后简单打印模型class

class RNN(nn.Module):
    def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim):
        super().__init__()

        self.embedding = nn.Embedding(input_dim, embedding_dim)
        self.rnn = nn.RNN(embedding_dim, hidden_dim)
        self.fc = nn.Linear(hidden_dim, output_dim)
    def forward():
        ...

model = RNN(input_dim, embedding_dim, hidden_dim, output_dim)
print(model)

为了使用 torchsummary 类型:

from torchsummary import summary

如果没有请先安装。

pip install torchsummary 

然后你可以试试,但请注意,由于某种原因它不起作用,除非我将模型设置为 cuda alexnet.cuda:

from torchsummary import summary
help(summary)
import torchvision.models as models
alexnet = models.alexnet(pretrained=False)
alexnet.cuda()
summary(alexnet, (3, 224, 224))
print(alexnet)

summary 必须采用输入大小,批大小设置为 -1,表示我们提供的任何批大小。

如果我们设置 summary(alexnet, (3, 224, 224), 32) 这意味着使用 bs=32.

summary(model, input_size, batch_size=-1, device='cuda')

输出:

Help on function summary in module torchsummary.torchsummary:

summary(model, input_size, batch_size=-1, device='cuda')

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [32, 64, 55, 55]          23,296
              ReLU-2           [32, 64, 55, 55]               0
         MaxPool2d-3           [32, 64, 27, 27]               0
            Conv2d-4          [32, 192, 27, 27]         307,392
              ReLU-5          [32, 192, 27, 27]               0
         MaxPool2d-6          [32, 192, 13, 13]               0
            Conv2d-7          [32, 384, 13, 13]         663,936
              ReLU-8          [32, 384, 13, 13]               0
            Conv2d-9          [32, 256, 13, 13]         884,992
             ReLU-10          [32, 256, 13, 13]               0
           Conv2d-11          [32, 256, 13, 13]         590,080
             ReLU-12          [32, 256, 13, 13]               0
        MaxPool2d-13            [32, 256, 6, 6]               0
AdaptiveAvgPool2d-14            [32, 256, 6, 6]               0
          Dropout-15                 [32, 9216]               0
           Linear-16                 [32, 4096]      37,752,832
             ReLU-17                 [32, 4096]               0
          Dropout-18                 [32, 4096]               0
           Linear-19                 [32, 4096]      16,781,312
             ReLU-20                 [32, 4096]               0
           Linear-21                 [32, 1000]       4,097,000
================================================================
Total params: 61,100,840
Trainable params: 61,100,840
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 18.38
Forward/backward pass size (MB): 268.12
Params size (MB): 233.08
Estimated Total Size (MB): 519.58
----------------------------------------------------------------
AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace)
    (3): Dropout(p=0.5)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

您可以使用

from torchsummary import summary

您可以指定设备

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

您可以创建一个网络,如果您使用的是 MNIST 数据集,那么以下命令将起作用并显示摘要

model = Network().to(device)
summary(model,(1,28,28))

Keras 喜欢使用 torchsummary 的模型摘要:

from torchsummary import summary
summary(model, input_size=(3, 224, 224))

torchinfo(以前的 torchsummary)包产生与 Keras1(对于给定的输入形状)类似的输出:2

from torchinfo import summary

model = ConvNet()
batch_size = 16
summary(model, input_size=(batch_size, 1, 28, 28))
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
├─Conv2d (conv1): 1-1                    [5, 10, 24, 24]           260
├─Conv2d (conv2): 1-2                    [5, 20, 8, 8]             5,020
├─Dropout2d (conv2_drop): 1-3            [5, 20, 8, 8]             --
├─Linear (fc1): 1-4                      [5, 50]                   16,050
├─Linear (fc2): 1-5                      [5, 10]                   510
==========================================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
Total mult-adds (M): 7.69
==========================================================================================
Input size (MB): 0.05
Forward/backward pass size (MB): 0.91
Params size (MB): 0.09
Estimated Total Size (MB): 1.05
==========================================================================================

备注:

  1. Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensorflow's model.summary()...

  2. 与 Keras 不同,PyTorch 有一个 可以适应任何兼容的跨多个调用的输入形状,例如任何足够大的图像尺寸(对于完全卷积网络)。

    因此,它不能为每一层呈现 固有 组 input/output 形状,因为这些是输入相关的,为什么在上面的包中你必须指定输入维度。

summary(my_model, (3, 224, 224), device = 'cpu') 将解决问题。

我更喜欢这个简单的片段 -

net = model
modules = [module for module in net.modules()]
params = [param.shape for param in net.parameters()]

# Print Model Summary
print(modules[0])
total_params=0
for i in range(1,len(modules)):
   j = 2*i
   param = (params[j-2][1]*params[j-2][0])+params[j-1][0]
   total_params += param
   print("Layer",i,"->\t",end="")
   print("Weights:", params[j-2][0],"x",params[j-2][1],
         "\tBias: ",params[j-1][0], "\tParameters: ", param)
print("\nTotal Params: ", total_params)

这打印了我需要的一切 -

Net(
  (hLayer1): Linear(in_features=1024, out_features=256, bias=True)
  (hLayer2): Linear(in_features=256, out_features=128, bias=True)
  (hLayer3): Linear(in_features=128, out_features=64, bias=True)
  (outLayer): Linear(in_features=64, out_features=10, bias=True)
)
Layer 1 ->  Weights: 256 x 1024     Bias:  256  Parameters:  262400
Layer 2 ->  Weights: 128 x 256      Bias:  128  Parameters:  32896
Layer 3 ->  Weights: 64 x 128       Bias:  64   Parameters:  8256
Layer 4 ->  Weights: 10 x 64        Bias:  10   Parameters:  650

Total Parameters:  304202

对于复杂的模型或更深入的模型统计

安装 torchstat

pip install torchstat

获取统计数据

from torchstat import stat
import torchvision.models as models

model = models.vgg19()
stat(model, (3, 224, 224))

输出-

        module name  input shape output shape       params memory(MB)              MAdd             Flops   MemRead(B)  MemWrite(B) duration[%]    MemR+W(B)
0        features.0    3 224 224   64 224 224       1792.0      12.25     173,408,256.0      89,915,392.0     609280.0   12845056.0      21.56%   13454336.0
1        features.1   64 224 224   64 224 224          0.0      12.25       3,211,264.0       3,211,264.0   12845056.0   12845056.0       0.92%   25690112.0
2        features.2   64 224 224   64 224 224      36928.0      12.25   3,699,376,128.0   1,852,899,328.0   12992768.0   12845056.0       4.74%   25837824.0
3        features.3   64 224 224   64 224 224          0.0      12.25       3,211,264.0       3,211,264.0   12845056.0   12845056.0       0.92%   25690112.0
4        features.4   64 224 224   64 112 112          0.0       3.06       2,408,448.0       3,211,264.0   12845056.0    3211264.0       1.22%   16056320.0
5        features.5   64 112 112  128 112 112      73856.0       6.12   1,849,688,064.0     926,449,664.0    3506688.0    6422528.0       4.71%    9929216.0
6        features.6  128 112 112  128 112 112          0.0       6.12       1,605,632.0       1,605,632.0    6422528.0    6422528.0       0.94%   12845056.0
7        features.7  128 112 112  128 112 112     147584.0       6.12   3,699,376,128.0   1,851,293,696.0    7012864.0    6422528.0       4.36%   13435392.0
8        features.8  128 112 112  128 112 112          0.0       6.12       1,605,632.0       1,605,632.0    6422528.0    6422528.0       0.91%   12845056.0
9        features.9  128 112 112  128  56  56          0.0       1.53       1,204,224.0       1,605,632.0    6422528.0    1605632.0       1.51%    8028160.0
10      features.10  128  56  56  256  56  56     295168.0       3.06   1,849,688,064.0     925,646,848.0    2786304.0    3211264.0       3.57%    5997568.0
11      features.11  256  56  56  256  56  56          0.0       3.06         802,816.0         802,816.0    3211264.0    3211264.0       0.90%    6422528.0
12      features.12  256  56  56  256  56  56     590080.0       3.06   3,699,376,128.0   1,850,490,880.0    5571584.0    3211264.0       4.30%    8782848.0
13      features.13  256  56  56  256  56  56          0.0       3.06         802,816.0         802,816.0    3211264.0    3211264.0       0.90%    6422528.0
14      features.14  256  56  56  256  56  56     590080.0       3.06   3,699,376,128.0   1,850,490,880.0    5571584.0    3211264.0       4.38%    8782848.0
15      features.15  256  56  56  256  56  56          0.0       3.06         802,816.0         802,816.0    3211264.0    3211264.0       0.94%    6422528.0
16      features.16  256  56  56  256  56  56     590080.0       3.06   3,699,376,128.0   1,850,490,880.0    5571584.0    3211264.0       4.33%    8782848.0
17      features.17  256  56  56  256  56  56          0.0       3.06         802,816.0         802,816.0    3211264.0    3211264.0       0.90%    6422528.0
18      features.18  256  56  56  256  28  28          0.0       0.77         602,112.0         802,816.0    3211264.0     802816.0       1.44%    4014080.0
19      features.19  256  28  28  512  28  28    1180160.0       1.53   1,849,688,064.0     925,245,440.0    5523456.0    1605632.0       3.60%    7129088.0
20      features.20  512  28  28  512  28  28          0.0       1.53         401,408.0         401,408.0    1605632.0    1605632.0       0.92%    3211264.0
21      features.21  512  28  28  512  28  28    2359808.0       1.53   3,699,376,128.0   1,850,089,472.0   11044864.0    1605632.0       4.45%   12650496.0
22      features.22  512  28  28  512  28  28          0.0       1.53         401,408.0         401,408.0    1605632.0    1605632.0       0.94%    3211264.0
23      features.23  512  28  28  512  28  28    2359808.0       1.53   3,699,376,128.0   1,850,089,472.0   11044864.0    1605632.0       4.39%   12650496.0
24      features.24  512  28  28  512  28  28          0.0       1.53         401,408.0         401,408.0    1605632.0    1605632.0       0.90%    3211264.0
25      features.25  512  28  28  512  28  28    2359808.0       1.53   3,699,376,128.0   1,850,089,472.0   11044864.0    1605632.0       4.34%   12650496.0
26      features.26  512  28  28  512  28  28          0.0       1.53         401,408.0         401,408.0    1605632.0    1605632.0       0.90%    3211264.0
27      features.27  512  28  28  512  14  14          0.0       0.38         301,056.0         401,408.0    1605632.0     401408.0       0.96%    2007040.0
28      features.28  512  14  14  512  14  14    2359808.0       0.38     924,844,032.0     462,522,368.0    9840640.0     401408.0       0.99%   10242048.0
29      features.29  512  14  14  512  14  14          0.0       0.38         100,352.0         100,352.0     401408.0     401408.0       0.00%     802816.0
30      features.30  512  14  14  512  14  14    2359808.0       0.38     924,844,032.0     462,522,368.0    9840640.0     401408.0       0.11%   10242048.0
31      features.31  512  14  14  512  14  14          0.0       0.38         100,352.0         100,352.0     401408.0     401408.0       0.00%     802816.0
32      features.32  512  14  14  512  14  14    2359808.0       0.38     924,844,032.0     462,522,368.0    9840640.0     401408.0       0.11%   10242048.0
33      features.33  512  14  14  512  14  14          0.0       0.38         100,352.0         100,352.0     401408.0     401408.0       0.00%     802816.0
34      features.34  512  14  14  512  14  14    2359808.0       0.38     924,844,032.0     462,522,368.0    9840640.0     401408.0       0.11%   10242048.0
35      features.35  512  14  14  512  14  14          0.0       0.38         100,352.0         100,352.0     401408.0     401408.0       0.00%     802816.0
36      features.36  512  14  14  512   7   7          0.0       0.10          75,264.0         100,352.0     401408.0     100352.0       0.01%     501760.0
37          avgpool  512   7   7  512   7   7          0.0       0.10               0.0               0.0          0.0          0.0       0.49%          0.0
38     classifier.0        25088         4096  102764544.0       0.02     205,516,800.0     102,760,448.0  411158528.0      16384.0      11.27%  411174912.0
39     classifier.1         4096         4096          0.0       0.02           4,096.0           4,096.0      16384.0      16384.0       0.00%      32768.0
40     classifier.2         4096         4096          0.0       0.02               0.0               0.0          0.0          0.0       0.01%          0.0
41     classifier.3         4096         4096   16781312.0       0.02      33,550,336.0      16,777,216.0   67141632.0      16384.0       1.08%   67158016.0
42     classifier.4         4096         4096          0.0       0.02           4,096.0           4,096.0      16384.0      16384.0       0.00%      32768.0
43     classifier.5         4096         4096          0.0       0.02               0.0               0.0          0.0          0.0       0.00%          0.0
44     classifier.6         4096         1000    4097000.0       0.00       8,191,000.0       4,096,000.0   16404384.0       4000.0       0.93%   16408384.0
total                                          143667240.0     119.34  39,283,567,128.0  19,667,896,320.0   16404384.0       4000.0     100.00%  825282624.0
============================================================================================================================================================
Total params: 143,667,240
------------------------------------------------------------------------------------------------------------------------------------------------------------
Total memory: 119.34 MB
Total MAdd: 39.28 GMAdd
Total Flops: 19.67 GFlops
Total MemR+W: 787.05 MB