使用预训练 (Tensorflow) CNN 对图像进行分类

Classifying images using pre-trained (Tensorflow) CNN

我已经在自己的数据集上训练 alexnet_v2,现在想在另一个应用程序中使用它。这应该非常简单,我已经尝试以多种方式实现它,但要么我遇到无法解决的错误,要么(在下面的代码的情况下)它无限期挂起。

理想情况下,我喜欢用 C++(但 C++ API 似乎不可靠,或者至少在许多地方有过时的文档,所以 python 是可以接受的),我会喜欢对大组图像进行分类(例如:为程序提供 80 张动物图像并返回其中是否显示猫)。

我使用下面的代码是否正确?如果是这样,我该如何解决。

如果没有,是否有任何更好方法的工作示例?

非常感谢。

import tensorflow as tf

#Using preprocessing and alexnet_v2 net from the slim examples

from nets import nets_factory
from preprocessing import preprocessing_factory

#Checkpoint file from training on binary dataset

checkpoint_path = '/home/ubuntu/tensorflow/models/slim/data/checkpoint.ckpt'

slim = tf.contrib.slim

number_of_classes = 2


image_filename = '/home/ubuntu/tensorflow/models/slim/data/images/neg_sample_123459.jpg'

image_filename_placeholder = tf.placeholder(tf.string)

image_tensor = tf.read_file(image_filename_placeholder)

image_tensor = tf.image.decode_jpeg(image_tensor, channels=3)

image_batch_tensor = tf.expand_dims(image_tensor, axis=0)

#Use slim's alexnet_v2 implementation

network_fn = nets_factory.get_network_fn('alexnet_v2',num_classes=2,is_training=False)

#Use inception preprocessing

preprocessing_name = 'inception'
image_preprocessing_fn= preprocessing_factory.get_preprocessing(preprocessing_name,is_training=False)

image_tensor=image_preprocessing_fn(image_tensor,network_fn.default_image_size,network_fn.default_image_size)

label=3
images,labels=tf.train.batch(
    [image_tensor,label],
    batch_size=2,
    num_threads=1,
    capacity=10)

pred,_=network_fn(images)

initializer = tf.local_variables_initializer()

init_fn=slim.assign_from_checkpoint_fn(
    checkpoint_path,
    slim.get_model_variables('alexnet_v2'))

with tf.Session() as sess:

    sess.run(initializer)
    init_fn(sess)
    tf.train.start_queue_runners(sess)
    image_np, pred_np = sess.run([image_tensor, pred], feed_dict={image_filename_placeholder: image_filename})

编辑:添加粗体行后,程序不再挂起。但是我收到占位符错误:

InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype string [[Node: Placeholder = Placeholderdtype=DT_STRING, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]]

我仔细检查了拼写,据我所知我输入的是正确的。怎么了?

tf.train.batch()函数使用后台线程来预取示例,但是您需要添加一个显式命令(tf.train.start_queue_runners(sess))来启动这些线程。按如下方式重写代码的最后一部分应该会停止挂起:

with tf.Session() as sess:
  sess.run(initializer)
  init_fn(sess)

  # Starts background threads for input preprocessing.
  tf.train.start_queue_runners(sess)

  image_np, pred_np = sess.run(
      [image_tensor, pred],
      feed_dict={image_filename_placeholder: image_filename})