Keras/Theano VGG16 AttributeError: 'Model' object has no attribute 'ndim'

Keras/Theano VGG16 AttributeError: 'Model' object has no attribute 'ndim'

我正在尝试构建一个带有 Theano 后端的 Keras 模型,该后端将时间分布的 VGG16 网络连接到 LSTM 层,然后最后连接到一系列密集层。但是,我收到以下错误:

Traceback (most recent call last):
  File "osr.py", line 341, in <module>
    osr.generate_osr_model()
  File "osr.py", line 145, in generate_osr_model
    cnn_out = GlobalAveragePooling2D()(cnn_base)
  File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 529, in __call__
    self.assert_input_compatibility(x)
  File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 464, in assert_input_compatibility
    if K.ndim(x) != spec.ndim:
  File "/usr/local/lib/python2.7/dist-packages/keras/backend/theano_backend.py", line 142, in ndim
    return x.ndim
AttributeError: 'Model' object has no attribute 'ndim'

这是我用来构建模型的代码部分:

        video = Input(shape=(self.frames_per_sequence,
                             3,
                             self.rows,
                             self.columns))
        cnn_base = VGG16(input_shape=(3,
                                      self.rows, 
                                      self.columns),
                         weights="imagenet",
                         include_top=False)
        cnn_out = GlobalAveragePooling2D()(cnn_base)
        cnn = Model(input=cnn_base.input, output=cnn_out)
        cnn.trainable = False
        encoded_frames = TimeDistributed(cnn)(video)
        encoded_vid = LSTM(256)(encoded_frames)
        hidden_layer = Dense(output_dim=1024, activation="relu")(encoded_vid)
        outputs = Dense(output_dim=class_count, activation="softmax")(hidden_layer)
        osr = Model([video], outputs)
        optimizer = Nadam(lr=0.002,
                          beta_1=0.9,
                          beta_2=0.999,
                          epsilon=1e-08,
                          schedule_decay=0.004)
        osr.compile(loss="categorical_crossentropy",
                    optimizer=optimizer,
                    metrics=["categorical_accuracy"])

解决方案是使用 cnn_base.output 作为 GlobalAveragePooling2D 层的输入:

cnn_out = GlobalAveragePooling2D()(cnn_base.output)