通过引用相似的列名称,使用 Tidyr 的 Unite 组合多个列
Combining Multiple Columns with Tidyr's Unite by Referencing Similar Column Names
library(tidyr)
library(dplyr)
library(tidyverse)
下面是一个简单数据框的代码。我有一些乱七八糟的数据,这些数据是用散布在不同列中的列因子类别导出的。
Client<-c("Client1","Client2","Client3","Client4","Client5")
Sex_M<-c("Male","NA","Male","NA","Male")
Sex_F<-c(" ","Female"," ","Female"," ")
Satisfaction_Satisfied<-c("Satisfied"," "," ","Satisfied","Satisfied")
Satisfaction_VerySatisfied<-c(" ","VerySatisfied","VerySatisfied"," "," ")
CommunicationType_Email<-c("Email"," "," ","Email","Email")
CommunicationType_Phone<-c(" ","Phone ","Phone "," "," ")
DF<-tibble(Client,Sex_M,Sex_F,Satisfaction_Satisfied,Satisfaction_VerySatisfied,CommunicationType_Email,CommunicationType_Phone)
我想使用 tidyr 的 "unite" 将类别重新组合成单列。
DF<-DF%>%unite(Sat,Satisfaction_Satisfied,Satisfaction_VerySatisfied,sep=" ")%>%
unite(Sex,Sex_M,Sex_F,sep=" ")
但是,我必须写多行 "unite" 行,我觉得这违反了三次规则,所以必须有一种方法可以使这更容易,特别是因为我的真实数据包含几十列需要结合起来。有没有办法使用 "unite" 一次,但以某种方式引用匹配的列名,以便所有相似的列名(例如,包含 "Sex" 用于 "Sex_M" 和 "Sex_F", and "CommunicationType" for "CommunicationType_Email" and "CommunicationType_Phone") 与上面的公式结合?
我也在想一个可以让我输入列名的功能,但这对我来说太难了,因为它涉及复杂的标准评估。
是这样的吗?如果您有很多列。
result<-with(new.env(),{
Client<-c("Client1","Client2","Client3","Client4","Client5")
Sex_M<-c("Male","NA","Male","NA","Male")
Sex_F<-c(" ","Female"," ","Female"," ")
Satisfaction_Satisfied<-c("Satisfied"," "," ","Satisfied","Satisfied")
Satisfaction_VerySatisfied<-c(" ","VerySatisfied","VerySatisfied"," "," ")
CommunicationType_Email<-c("Email"," "," ","Email","Email")
CommunicationType_Phone<-c(" ","Phone ","Phone "," "," ")
x<-ls()
categories<-unique(sub("(.*)_(.*)", "\1", x))
df<-setNames(data.frame( lapply(x, function(y) get(y))), x)
for(nm in categories){
df<-unite_(df, nm, x[contains(vars = x, match = nm)])
}
return(df)
})
Client CommunicationType Satisfaction Sex
1 Client1 Email_ Satisfied_ _Male
2 Client2 _Phone _VerySatisfied Female_NA
3 Client3 _Phone _VerySatisfied _Male
4 Client4 Email_ Satisfied_ Female_NA
5 Client5 Email_ Satisfied_ _Male
我们可以使用unite
library(tidyverse)
DF %>%
unite(Sat, matches("^Sat"))
对于多个情况,也许
gather(DF, Var, Val, -Client, na.rm = TRUE) %>%
separate(Var, into = c("Var1", "Var2")) %>%
group_by(Client, Var1) %>%
summarise(Val = paste(Val[!(is.na(Val)|Val=="")], collapse="_")) %>%
spread(Var1, Val)
# Client CommunicationType Satisfaction Sex
#* <chr> <chr> <chr> <chr>
#1 Client1 Email Satisfied Male
#2 Client2 Phone VerySatisfied Female
#3 Client3 Phone VerySatisfied Male
#4 Client4 Email Satisfied Female
#5 Client5 Email Satisfied Male
library(tidyr)
library(dplyr)
library(tidyverse)
下面是一个简单数据框的代码。我有一些乱七八糟的数据,这些数据是用散布在不同列中的列因子类别导出的。
Client<-c("Client1","Client2","Client3","Client4","Client5")
Sex_M<-c("Male","NA","Male","NA","Male")
Sex_F<-c(" ","Female"," ","Female"," ")
Satisfaction_Satisfied<-c("Satisfied"," "," ","Satisfied","Satisfied")
Satisfaction_VerySatisfied<-c(" ","VerySatisfied","VerySatisfied"," "," ")
CommunicationType_Email<-c("Email"," "," ","Email","Email")
CommunicationType_Phone<-c(" ","Phone ","Phone "," "," ")
DF<-tibble(Client,Sex_M,Sex_F,Satisfaction_Satisfied,Satisfaction_VerySatisfied,CommunicationType_Email,CommunicationType_Phone)
我想使用 tidyr 的 "unite" 将类别重新组合成单列。
DF<-DF%>%unite(Sat,Satisfaction_Satisfied,Satisfaction_VerySatisfied,sep=" ")%>%
unite(Sex,Sex_M,Sex_F,sep=" ")
但是,我必须写多行 "unite" 行,我觉得这违反了三次规则,所以必须有一种方法可以使这更容易,特别是因为我的真实数据包含几十列需要结合起来。有没有办法使用 "unite" 一次,但以某种方式引用匹配的列名,以便所有相似的列名(例如,包含 "Sex" 用于 "Sex_M" 和 "Sex_F", and "CommunicationType" for "CommunicationType_Email" and "CommunicationType_Phone") 与上面的公式结合?
我也在想一个可以让我输入列名的功能,但这对我来说太难了,因为它涉及复杂的标准评估。
是这样的吗?如果您有很多列。
result<-with(new.env(),{
Client<-c("Client1","Client2","Client3","Client4","Client5")
Sex_M<-c("Male","NA","Male","NA","Male")
Sex_F<-c(" ","Female"," ","Female"," ")
Satisfaction_Satisfied<-c("Satisfied"," "," ","Satisfied","Satisfied")
Satisfaction_VerySatisfied<-c(" ","VerySatisfied","VerySatisfied"," "," ")
CommunicationType_Email<-c("Email"," "," ","Email","Email")
CommunicationType_Phone<-c(" ","Phone ","Phone "," "," ")
x<-ls()
categories<-unique(sub("(.*)_(.*)", "\1", x))
df<-setNames(data.frame( lapply(x, function(y) get(y))), x)
for(nm in categories){
df<-unite_(df, nm, x[contains(vars = x, match = nm)])
}
return(df)
})
Client CommunicationType Satisfaction Sex
1 Client1 Email_ Satisfied_ _Male
2 Client2 _Phone _VerySatisfied Female_NA
3 Client3 _Phone _VerySatisfied _Male
4 Client4 Email_ Satisfied_ Female_NA
5 Client5 Email_ Satisfied_ _Male
我们可以使用unite
library(tidyverse)
DF %>%
unite(Sat, matches("^Sat"))
对于多个情况,也许
gather(DF, Var, Val, -Client, na.rm = TRUE) %>%
separate(Var, into = c("Var1", "Var2")) %>%
group_by(Client, Var1) %>%
summarise(Val = paste(Val[!(is.na(Val)|Val=="")], collapse="_")) %>%
spread(Var1, Val)
# Client CommunicationType Satisfaction Sex
#* <chr> <chr> <chr> <chr>
#1 Client1 Email Satisfied Male
#2 Client2 Phone VerySatisfied Female
#3 Client3 Phone VerySatisfied Male
#4 Client4 Email Satisfied Female
#5 Client5 Email Satisfied Male