tensorflow 适配局部 rgb 图像分类

tensorflow adapt for local rgb image classification

我想知道如何调整 github batchnorm_five_layers 中的以下代码,以从图像大小为 780x780 和 RBG 的本地图像路径中读取两个 类(猫和狗)。这是 link:

中未注释的代码
        # encoding: UTF-8

        import tensorflow as tf
        import tensorflowvisu
        import math
        from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
        tf.set_random_seed(0)

        # Download images and labels into mnist.test (10K images+labels) and mnist.train (60K images+labels)
        mnist = read_data_sets("data", one_hot=True, reshape=False, validation_size=0)

        # input X: 28x28 grayscale images, the first dimension (None) will index the images in the mini-batch
        X = tf.placeholder(tf.float32, [None, 28, 28, 1])
        # correct answers will go here
        Y_ = tf.placeholder(tf.float32, [None, 10])
        # variable learning rate
        lr = tf.placeholder(tf.float32)
        # train/test selector for batch normalisation
        tst = tf.placeholder(tf.bool)
        # training iteration
        iter = tf.placeholder(tf.int32)

        # five layers and their number of neurons (tha last layer has 10 softmax neurons)
        L = 200
        M = 100
        N = 60
        P = 30
        Q = 10

        # Weights initialised with small random values between -0.2 and +0.2
        # When using RELUs, make sure biases are initialised with small *positive* values for example 0.1 = tf.ones([K])/10
        W1 = tf.Variable(tf.truncated_normal([784, L], stddev=0.1))  # 784 = 28 * 28
        B1 = tf.Variable(tf.ones([L])/10)
        W2 = tf.Variable(tf.truncated_normal([L, M], stddev=0.1))
        B2 = tf.Variable(tf.ones([M])/10)
        W3 = tf.Variable(tf.truncated_normal([M, N], stddev=0.1))
        B3 = tf.Variable(tf.ones([N])/10)
        W4 = tf.Variable(tf.truncated_normal([N, P], stddev=0.1))
        B4 = tf.Variable(tf.ones([P])/10)
        W5 = tf.Variable(tf.truncated_normal([P, Q], stddev=0.1))
        B5 = tf.Variable(tf.ones([Q])/10)


        def batchnorm(Ylogits, is_test, iteration, offset, convolutional=False):
            exp_moving_avg = tf.train.ExponentialMovingAverage(0.999, iteration) # adding the iteration prevents from averaging across non-existing iterations
            bnepsilon = 1e-5
            if convolutional:
                mean, variance = tf.nn.moments(Ylogits, [0, 1, 2])
            else:
                mean, variance = tf.nn.moments(Ylogits, [0])
            update_moving_everages = exp_moving_avg.apply([mean, variance])
            m = tf.cond(is_test, lambda: exp_moving_avg.average(mean), lambda: mean)
            v = tf.cond(is_test, lambda: exp_moving_avg.average(variance), lambda: variance)
            Ybn = tf.nn.batch_normalization(Ylogits, m, v, offset, None, bnepsilon)
            return Ybn, update_moving_everages

        def no_batchnorm(Ylogits, is_test, iteration, offset, convolutional=False):
            return Ylogits, tf.no_op()

        # The model
        XX = tf.reshape(X, [-1, 784])

        # batch norm scaling is not useful with relus
        # batch norm offsets are used instead of biases

        Y1l = tf.matmul(XX, W1)
        Y1bn, update_ema1 = batchnorm(Y1l, tst, iter, B1)
        Y1 = tf.nn.relu(Y1bn)

        Y2l = tf.matmul(Y1, W2)
        Y2bn, update_ema2 = batchnorm(Y2l, tst, iter, B2)
        Y2 = tf.nn.relu(Y2bn)

        Y3l = tf.matmul(Y2, W3)
        Y3bn, update_ema3 = batchnorm(Y3l, tst, iter, B3)
        Y3 = tf.nn.relu(Y3bn)

        Y4l = tf.matmul(Y3, W4)
        Y4bn, update_ema4 = batchnorm(Y4l, tst, iter, B4)
        Y4 = tf.nn.relu(Y4bn)

        Ylogits = tf.matmul(Y4, W5) + B5
        Y = tf.nn.softmax(Ylogits)

        update_ema = tf.group(update_ema1, update_ema2, update_ema3, update_ema4)

        cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=Ylogits, labels=Y_)
        cross_entropy = tf.reduce_mean(cross_entropy)*100

        # accuracy of the trained model, between 0 (worst) and 1 (best)
        correct_prediction = tf.equal(tf.argmax(Y, 1), tf.argmax(Y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        # matplotlib visualisation
        allweights = tf.concat([tf.reshape(W1, [-1]), tf.reshape(W2, [-1]), tf.reshape(W3, [-1])], 0)
        allbiases  = tf.concat([tf.reshape(B1, [-1]), tf.reshape(B2, [-1]), tf.reshape(B3, [-1])], 0)
        # to use for sigmoid
        #allactivations = tf.concat([tf.reshape(Y1, [-1]), tf.reshape(Y2, [-1]), tf.reshape(Y3, [-1]), tf.reshape(Y4, [-1])], 0)
        # to use for RELU
        allactivations = tf.concat([tf.reduce_max(Y1, [0]), tf.reduce_max(Y2, [0]), tf.reduce_max(Y3, [0]), tf.reduce_max(Y4, [0])], 0)
        alllogits = tf.concat([tf.reshape(Y1l, [-1]), tf.reshape(Y2l, [-1]), tf.reshape(Y3l, [-1]), tf.reshape(Y4l, [-1])], 0)
        I = tensorflowvisu.tf_format_mnist_images(X, Y, Y_)
        It = tensorflowvisu.tf_format_mnist_images(X, Y, Y_, 1000, lines=25)
        datavis = tensorflowvisu.MnistDataVis(title4="Logits", title5="Max activations across batch", histogram4colornum=2, histogram5colornum=2)


        # training step, the learning rate is a placeholder
        train_step = tf.train.AdamOptimizer(lr).minimize(cross_entropy)

        # init
        init = tf.global_variables_initializer()
        sess = tf.Session()
        sess.run(init)


        # You can call this function in a loop to train the model, 100 images at a time
        def training_step(i, update_test_data, update_train_data):

            # training on batches of 100 images with 100 labels
            batch_X, batch_Y = mnist.train.next_batch(100)

            max_learning_rate = 0.03
            min_learning_rate = 0.0001
            decay_speed = 1000.0
            learning_rate = min_learning_rate + (max_learning_rate - min_learning_rate) * math.exp(-i/decay_speed)

            # compute training values for visualisation
            if update_train_data:
                a, c, im, al, ac = sess.run([accuracy, cross_entropy, I, alllogits, allactivations], {X: batch_X, Y_: batch_Y, tst: False})
                print(str(i) + ": accuracy:" + str(a) + " loss: " + str(c) + " (lr:" + str(learning_rate) + ")")
                datavis.append_training_curves_data(i, a, c)
                datavis.update_image1(im)
                datavis.append_data_histograms(i, al, ac)

            # compute test values for visualisation
            if update_test_data:
                a, c, im = sess.run([accuracy, cross_entropy, It], {X: mnist.test.images, Y_: mnist.test.labels, tst: True})
                print(str(i) + ": ********* epoch " + str(i*100//mnist.train.images.shape[0]+1) + " ********* test accuracy:" + str(a) + " test loss: " + str(c))
                datavis.append_test_curves_data(i, a, c)
                datavis.update_image2(im)

            # the backpropagation training step
            sess.run(train_step, {X: batch_X, Y_: batch_Y, lr: learning_rate, tst: False})
            sess.run(update_ema, {X: batch_X, Y_: batch_Y, tst: False, iter: i})

        datavis.animate(training_step, iterations=10000+1, train_data_update_freq=20, test_data_update_freq=100, more_tests_at_start=True)

        print("max test accuracy: " + str(datavis.get_max_test_accuracy()))

在评论中回答您的问题:这可能是您要将代码更改为的内容:

 # input X: images, the first dimension (None) will index the images in the mini-batch
 X = tf.placeholder(tf.float32, [None, 780, 780, 3])
 # correct answers will go here
 Y_ = tf.placeholder(tf.float32, [None, 2])

图像可以这样读:

from scipy import misc
input = misc.imread('input.png')

现在最好遵循 Tensorflow 教程。这个真的不错:kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow-iv/info

祝你好运!