Pandas Dataframe:根据地理坐标(经度和纬度)连接范围内的项目

Pandas Dataframe: join items in range based on their geo coordinates (longitude and latitude)

我得到了一个包含地点及其经纬度的数据框。想象一下城市。

df = pd.DataFrame([{'city':"Berlin", 'lat':52.5243700, 'lng':13.4105300},
                   {'city':"Potsdam", 'lat':52.3988600, 'lng':13.0656600},
                   {'city':"Hamburg", 'lat':53.5753200, 'lng':10.0153400}]);

现在我试图让所有城市都在一个半径范围内。假设距离柏林 500 公里、汉堡 500 公里等的所有城市。我会通过复制原始数据帧并将两者与距离函数连接来做到这一点。

中间结果有点像这样:

Berlin --> Potsdam
Berlin --> Hamburg
Potsdam --> Berlin
Potsdam --> Hamburg
Hamburg --> Potsdam
Hamburg --> Berlin

这个分组(归约)后的最终结果应该是这样的。 备注:如果值列表包含城市的所有列,那就太好了。

Berlin --> [Potsdam, Hamburg]
Potsdam --> [Berlin, Hamburg]
Hamburg --> [Berlin, Potsdam]

或者只是一个城市周围 500 公里的城市数。

Berlin --> 2
Potsdam --> 2
Hamburg --> 2

由于我是 Python 的新手,我将不胜感激。我熟悉 haversine 距离。但不确定Scipy或Pandas.

中是否有有用的distance/spatial方法

很高兴你能给我一个起点。到目前为止,我尝试关注 this post.

更新: 这道题的原意来自Two Sigma Connect Rental Listing Kaggle Competition。这个想法是让那些列表在另一个列表周围 100m。其中 a) 表示密度,因此是一个受欢迎的区域,b) 如果比较地址,您可以找出是否有交叉路口,因此是一个嘈杂的区域。因此,您不需要完整的项目到项目关系,因为您不仅需要比较距离,还需要比较地址和其他元数据。 PS: 我没有向 Kaggle 上传解决方案。我只是想学习。

您可以使用:

from math import radians, cos, sin, asin, sqrt

def haversine(lon1, lat1, lon2, lat2):

    lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])

    # haversine formula 
    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a)) 
    r = 6371 # Radius of earth in kilometers. Use 3956 for miles
    return c * r

首先需要与merge, remove row with same values in city_x and city_y by boolean indexing进行交叉连接:

df['tmp'] = 1
df = pd.merge(df,df,on='tmp')
df = df[df.city_x != df.city_y]
print (df)
    city_x     lat_x     lng_x  tmp   city_y     lat_y     lng_y
1   Berlin  52.52437  13.41053    1  Potsdam  52.39886  13.06566
2   Berlin  52.52437  13.41053    1  Hamburg  53.57532  10.01534
3  Potsdam  52.39886  13.06566    1   Berlin  52.52437  13.41053
5  Potsdam  52.39886  13.06566    1  Hamburg  53.57532  10.01534
6  Hamburg  53.57532  10.01534    1   Berlin  52.52437  13.41053
7  Hamburg  53.57532  10.01534    1  Potsdam  52.39886  13.06566

然后应用haversine函数:

df['dist'] = df.apply(lambda row: haversine(row['lng_x'], 
                                            row['lat_x'], 
                                            row['lng_y'], 
                                            row['lat_y']), axis=1)

过滤距离:

df = df[df.dist < 500]
print (df)
    city_x     lat_x     lng_x  tmp   city_y     lat_y     lng_y        dist
1   Berlin  52.52437  13.41053    1  Potsdam  52.39886  13.06566   27.215704
2   Berlin  52.52437  13.41053    1  Hamburg  53.57532  10.01534  255.223782
3  Potsdam  52.39886  13.06566    1   Berlin  52.52437  13.41053   27.215704
5  Potsdam  52.39886  13.06566    1  Hamburg  53.57532  10.01534  242.464120
6  Hamburg  53.57532  10.01534    1   Berlin  52.52437  13.41053  255.223782
7  Hamburg  53.57532  10.01534    1  Potsdam  52.39886  13.06566  242.464120

最后创建 list 或使用 groupby 获得 size:

df1 = df.groupby('city_x')['city_y'].apply(list)
print (df1)
city_x
Berlin     [Potsdam, Hamburg]
Hamburg     [Berlin, Potsdam]
Potsdam     [Berlin, Hamburg]
Name: city_y, dtype: object

df2 = df.groupby('city_x')['city_y'].size()
print (df2)
city_x
Berlin     2
Hamburg    2
Potsdam    2
dtype: int64

也可以使用 numpy haversine solution:

def haversine_np(lon1, lat1, lon2, lat2):
    """
    Calculate the great circle distance between two points
    on the earth (specified in decimal degrees)

    All args must be of equal length.    

    """
    lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])

    dlon = lon2 - lon1
    dlat = lat2 - lat1

    a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2

    c = 2 * np.arcsin(np.sqrt(a))
    km = 6367 * c
    return km

df['tmp'] = 1
df = pd.merge(df,df,on='tmp')
df = df[df.city_x != df.city_y]
#print (df)

df['dist'] = haversine_np(df['lng_x'],df['lat_x'],df['lng_y'],df['lat_y'])
    city_x     lat_x     lng_x  tmp   city_y     lat_y     lng_y        dist
1   Berlin  52.52437  13.41053    1  Potsdam  52.39886  13.06566   27.198616
2   Berlin  52.52437  13.41053    1  Hamburg  53.57532  10.01534  255.063541
3  Potsdam  52.39886  13.06566    1   Berlin  52.52437  13.41053   27.198616
5  Potsdam  52.39886  13.06566    1  Hamburg  53.57532  10.01534  242.311890
6  Hamburg  53.57532  10.01534    1   Berlin  52.52437  13.41053  255.063541
7  Hamburg  53.57532  10.01534    1  Potsdam  52.39886  13.06566  242.311890

更新:我建议首先构建一个距离数据帧:

from scipy.spatial.distance import squareform, pdist
from itertools import combinations

# see definition of "haversine_np()" below     
x = pd.DataFrame({'dist':pdist(df[['lat','lng']], haversine_np)},
                 index=pd.MultiIndex.from_tuples(tuple(combinations(df['city'], 2))))

有效地产生成对距离 DF(没有重复):

In [106]: x
Out[106]:
                       dist
Berlin  Potsdam   27.198616
        Hamburg  255.063541
Potsdam Hamburg  242.311890

旧答案:

这里是稍微优化一下的版本,使用了scipy.spatial.distance.pdist方法:

from scipy.spatial.distance import squareform, pdist

# slightly modified version: of 
def haversine_np(p1, p2):
    """
    Calculate the great circle distance between two points
    on the earth (specified in decimal degrees)

    All args must be of equal length.    

    """
    lat1, lon1, lat2, lon2 = np.radians([p1[0], p1[1],
                                         p2[0], p2[1]])
    dlon = lon2 - lon1
    dlat = lat2 - lat1

    a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2

    c = 2 * np.arcsin(np.sqrt(a))
    km = 6367 * c
    return km

x = pd.DataFrame(squareform(pdist(df[['lat','lng']], haversine_np)),
                 columns=df.city.unique(),
                 index=df.city.unique())

这给了我们:

In [78]: x
Out[78]:
             Berlin     Potsdam     Hamburg
Berlin     0.000000   27.198616  255.063541
Potsdam   27.198616    0.000000  242.311890
Hamburg  255.063541  242.311890    0.000000

让我们数一数距离大于30的城市数量:

In [81]: x.groupby(level=0, as_index=False) \
    ...:  .apply(lambda c: c[c>30].notnull().sum(1)) \
    ...:  .reset_index(level=0, drop=True)
Out[81]:
Berlin     1
Hamburg    2
Potsdam    1
dtype: int64