相当于 C++ 中 numpy.random.choice 的函数

equivalent function to numpy.random.choice in C++

我需要你的帮助来解决以下问题:

c++/opencv中有没有等价于下面代码的函数:

np.random.choice(len(vec), samples, p=probabilities[:,0], replace=True)

提前致谢。

我认为没有免费提供此功能的功能。可能要自己写。

关于如何编写这样一个函数的一些提示:

  • 假设您有一个 vector<float> 存储您的概率。首先对这个向量使用std::partial_sum得到元素的累积概率
  • 然后,对于每个样本,生成一个介于0和1之间的随机浮点数。我们称它为random_value。迭代累积概率向量,直到找到大于 random_value 的值。此时的索引就是您的示例索引。取 samples 向量中此索引处的值,将其存储在某处并重复。

您似乎想从 discrete random distribution

中取样

该页面上的示例非常具有示范性:

// discrete_distribution
#include <iostream>
#include <random>

int main()
{
  const int nrolls = 10000; // number of experiments
  const int nstars = 100;   // maximum number of stars to distribute

  std::default_random_engine generator;
  std::discrete_distribution<int> distribution {2,2,1,1,2,2,1,1,2,2};

  int p[10]={};

  for (int i=0; i<nrolls; ++i) {
    int number = distribution(generator);
    ++p[number];
  }

  std::cout << "a discrete_distribution:" << std::endl;
  for (int i=0; i<10; ++i)
    std::cout << i << ": " << std::string(p[i]*nstars/nrolls,'*') << std::endl;

  return 0;
}

好吧,让我们看看:numpy.random.choice(a, size=None, replace=True, p=None)看我的评论,我猜你混淆了一些函数的参数。

对于输入 a,您使用的是样本数组。作为您想要 len(vec) 的输出大小,您希望通过替换抽样并具有自定义的非均匀分布。

首先使用随机分布生成索引数组,然后使用索引数组生成选定元素数组可能就足够了。

C++ 提供了生成非均匀分布数的帮助,即 std::discrete_distribution

示例:

#include <random>
#include <vector>
#include <algorithm>
#include <iostream>

int main()
{
    auto const samples = { 1, 2, 3, 4, 5, 6 }; // deducts to std::initializer_list<int>
    auto const probabilities = { 0.1, 0.2, 0.1, 0.5, 0.0, 1.0 }; // deducts to std::initializer_list<double>
    if (samples.size() < probabilities.size()) {
        std::cerr << "If there are more probabilities then samples, you will get out-of-bounds indices = UB!\n";
        return -1;
    }

    // generate non-uniform distribution (default result_type is int)
    std::discrete_distribution const distribution{probabilities};
    // note, for std::vector or std::array of probabilities, use
    // std::discrete_distribution distribution(cbegin(probabilities), cend(probabilities));

    int const outputSize = 10;

    std::vector<decltype(distribution)::result_type> indices;
    indices.reserve(outputSize); // reserve to prevent reallocation
    // use a generator lambda to draw random indices based on distribution
    std::generate_n(back_inserter(indices), outputSize,
        [distribution = std::move(distribution), // could also capture by reference (&) or construct in the capture list
         generator = std::default_random_engine{}  //pseudo random. Fixed seed! Always same output.
        ]() mutable { // mutable required for generator
            return distribution(generator);
        });

    std::cout << "Indices: ";
    for(auto const index : indices) std::cout << index << " ";
    std::cout << '\n';

    // just a trick to get the underlying type of samples. Works for std::initializer list, std::vector and std::array
    std::vector<decltype(samples)::value_type> output;
    output.reserve(outputSize); // reserve to prevent reallocation
    std::transform(cbegin(indices), cend(indices),
        back_inserter(output),
        [&samples](auto const index) {
            return *std::next(cbegin(samples), index);
            // note, for std::vector or std::array of samples, you can use
            // return samples[index];
        });

    std::cout << "Output samples: ";
    for(auto const sample : output) std::cout << sample << " ";
    std::cout << '\n';
}

On godbolt.org

编辑: 似乎建议 std::default_random_engine 执行采样 替换。