EMR 上的 pyspark 连接到 redshift 数据源

pyspark on EMR connect to redshift datasource

我一直在尝试将 pyspark 连接到 EMR 上的 redshift 数据源,但无法正常工作。这是我尝试过的:

因为 spark 在 EMR 上位于 /usr/lib/spark 而 jar 文件位于 /usr/lib/spark/jars

1.First 方法我试过了 我下载了依赖项并将其放在 /usr/lib/spark/jars

sudo wget http://repo1.maven.org/maven2/com/databricks/spark-redshift_2.10/2.0.0/spark-redshift_2.10-2.0.0.jar /usr/lib/spark/jars/

sudo wget http://repo1.maven.org/maven2/com/databricks/spark-avro_2.11/3.0.0/spark-avro_2.11-3.0.0.jar /usr/lib/spark/jars/

sudo wget https://github.com/ralfstx/minimal-json/releases/download/0.9.4/minimal-json-0.9.4.jar /usr/lib/spark/jars/

sudo wget https://s3.amazonaws.com/redshift-downloads/drivers/RedshiftJDBC42-1.2.1.1001.jar /usr/lib/spark/jars/

开始 pyspark 捐赠

pyspark --jars /usr/lib/spark/jars/spark-redshift_2.10-2.0.1.jar,/usr/lib/spark/jars/spark-avro_2.10-3.0.0.jar,/usr/lib/spark/jars/minimal-json-0.9.4.jar,/usr/lib/spark/jars/RedshiftJDBC42-1.2.1.1001.jar

使用 jar 文件启动 pyspark 后

from pyspark.sql import SQLContext

sc 
sql_context = SQLContext(sc)

# Read data from a query
df_users = sql_context.read \
    .format("com.databricks.spark.redshift") \
    .option("url", "jdbc:redshift://redshifthost:5439/database?user=username&password=pass") \
    .option("query", "select * from table limit 200;") \
    .option("tempdir", "s3n://path/for/temp/data") \
    .load()

返回的错误信息如下:

Traceback (most recent call last):
  File "<stdin>", line 6, in <module>
  File "/usr/lib/spark/python/pyspark/sql/readwriter.py", line 155, in load
    return self._df(self._jreader.load())
  File "/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in __call__
  File "/usr/lib/spark/python/pyspark/sql/utils.py", line 63, in deco
    return f(*a, **kw)
  File "/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py", line 319, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o55.load.
: java.lang.ClassNotFoundException: Could not load an Amazon Redshift JDBC driver; see the README for instructions on downloading and configuring the official Amazon driver.
    at com.databricks.spark.redshift.JDBCWrapper$$anonfun$getDriverClass.apply(RedshiftJDBCWrapper.scala:81)
    at com.databricks.spark.redshift.JDBCWrapper$$anonfun$getDriverClass.apply(RedshiftJDBCWrapper.scala:71)
    at scala.Option.getOrElse(Option.scala:121)
    at com.databricks.spark.redshift.JDBCWrapper.getDriverClass(RedshiftJDBCWrapper.scala:70)
    at com.databricks.spark.redshift.JDBCWrapper.getConnector(RedshiftJDBCWrapper.scala:183)
    at com.databricks.spark.redshift.RedshiftRelation$$anonfun$schema.apply(RedshiftRelation.scala:63)
    at com.databricks.spark.redshift.RedshiftRelation$$anonfun$schema.apply(RedshiftRelation.scala:60)
    at scala.Option.getOrElse(Option.scala:121)
    at com.databricks.spark.redshift.RedshiftRelation.schema$lzycompute(RedshiftRelation.scala:60)
    at com.databricks.spark.redshift.RedshiftRelation.schema(RedshiftRelation.scala:59)
    at org.apache.spark.sql.execution.datasources.LogicalRelation.<init>(LogicalRelation.scala:40)
    at org.apache.spark.sql.SparkSession.baseRelationToDataFrame(SparkSession.scala:389)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:146)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:125)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.ClassNotFoundException: com.amazon.redshift.jdbc4.Driver
    at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
    at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
    at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
    at java.lang.Class.forName0(Native Method)
    at java.lang.Class.forName(Class.java:348)
    at com.databricks.spark.redshift.Utils$.classForName(Utils.scala:42)
    at com.databricks.spark.redshift.JDBCWrapper$$anonfun$getDriverClass.apply(RedshiftJDBCWrapper.scala:78)
    ... 24 more
  1. 另一种方法是使用包名启动 pyspark

    导出SPARK_HOME='/usr/lib/spark'

    $SPARK_HOME/bin/pyspark --packages databricks:spark-redshift:0.4.0-hadoop2,com.databricks:spark-avro_2.11:3.2.0

这给了我与上面相同的错误。有没有人遇到过同样的问题并且知道如何解决?

提前谢谢你。

Spark 找不到您下载的 JDBC 驱动程序,原因可能是文件权限。

在 EMR 上它已经就位,因此您可以像这样引用它

pyspark --jars … /usr/share/aws/redshift/jdbc/RedshiftJDBC41.jar