Think Python 第二版习题 7-1

Think Python 2nd Edition Exercise 7-1

"Square Roots" 循环:

while True:
    y = (x+ a/x) / 2
    if y == x:
        return x
    x = y

复制“平方根”中的循环并将其封装在一个名为mysqrt的函数中,该函数以a作为参数,选择一个合理的值x,以及 returns a 的平方根估计值。 要测试它,请编写一个名为 test_square_root 的函数来打印 table,如下所示:

a   mysqrt(a)     math.sqrt(a)  diff
-   ---------     ------------  ----
1.0 1.0           1.0           0.0
2.0 1.41421356237 1.41421356237 2.22044604925e-16
3.0 1.73205080757 1.73205080757 0.0
4.0 2.0           2.0           0.0
5.0 2.2360679775  2.2360679775  0.0
6.0 2.44948974278 2.44948974278 0.0
7.0 2.64575131106 2.64575131106 0.0
8.0 2.82842712475 2.82842712475 4.4408920985e-16
9.0 3.0           3.0           0.0

这是我写的:

import math

def mysqrt(a):
    x = a/5
    while True:
        y = (x+ a/x) / 2
        if y == x:
            return x
        x = y

def test_square_root():
    a = 1.0
    print('a', repr(mysqrt(a)).rjust(6), repr(math.sqrt(a)).rjust(12), 'diff'.rjust(10))
    print("-      ---------            ------------          ----")
    while a < 10.0:
        print(a, "  ", mysqrt(a), "  ", math.sqrt(a), "  ", abs(mysqrt(a)-math.sqrt(a)))
        a += 1

test_square_root()

这是我得到的:

a    1.0          1.0       diff
-      ---------            ------------          ----
1.0    1.0    1.0    0.0
2.0    1.414213562373095    1.4142135623730951    2.220446049250313e-16
3.0    1.7320508075688772    1.7320508075688772    0.0
4.0    2.0    2.0    0.0
5.0    2.23606797749979    2.23606797749979    0.0
6.0    2.449489742783178    2.449489742783178    0.0
7.0    2.6457513110645907    2.6457513110645907    0.0
8.0    2.82842712474619    2.8284271247461903    4.440892098500626e-16
9.0    3.0    3.0    0.0

如您所见,数组没有整齐对齐。如果元素的长度不同,如何打印数组?谢谢!

调整打印语句,分别使用 {0:.8f} {0:.10f} 和 {0:.4f} 或您所需的列宽将每个元素打印到固定的小数位数。

您可以在打印语句中使用制表符\t

print("\t", a, "\t", y, "\t", square_method, "\t" "diff:", diff,)

这是我的代码,看起来不错:

from decimal import *
import math

def mysquare_root(a):
     x = 1
    while True:
        #print(x)
        y = (x + a/x) / 2
        if x == y:
            break
        x = y
    return (x)


def square_root(a):
    x = math.sqrt(a)
    return x
def difference(a):
    d = square_root(a) - mysquare_root(a)
    return d

# the below function prints the table, but the alignment is not good.
def list_func():
    for a in range(1, 10):
         print(float(a), " " * 20, f"{mysquare_root(a)}", " "*20, f"{square_root(a)}"," "*20,f"{difference(a)}")
list_func()

# by using the below functions ("dec_1, dec_2") we are fixing the decimals after point to 
#..........'15' numbers for uniform alignment.
# the 1st function is for square_root which is built in function
# 2nd is for alignment of difference after built_in_ function values.
def dec_1(a):
    d = Decimal(mysquare_root(a))
    #print(d)
    d1 = round(d, 15)
    #print(d1)
    #print(d1)
    return Decimal(d1)

def dec_2(a):
    d = Decimal(square_root(a))
    #print(d)
    d1 = round(d, 15)
    #print(d1)
    return Decimal(d1)

def print_it():
    for a in range(1, 10):
         print(float(a), " " * 20, f"{dec_1(a)}", ' '*9, f"{dec_2(a)}", ' '*9, f"{difference(a)}")

print_it()

这是我得到的解决方案:

1.0       1.000000000000000           1.000000000000000           0.0
2.0       1.414213562373095           1.414213562373095           2.220446049250313e-16
3.0       1.732050807568877           1.732050807568877           0.0
4.0       2.000000000000000           2.000000000000000           0.0
5.0       2.236067977499790           2.236067977499790           0.0
6.0       2.449489742783178           2.449489742783178           0.0
7.0       2.645751311064591           2.645751311064591           0.0
8.0       2.828427124746190           2.828427124746190           4.440892098500626e-16
9.0       3.000000000000000           3.000000000000000           0.0

这是我想出的完美解决方案:

from decimal import *
import math
# below function is used to find the square roots of a number using the newton's method(i.e; using formula)
def mysquare_root(a):
    x = 1
    while True:
        y = (x + a/x) / 2
        if x == y:
            break
        x = y
    return x

# below function is used to find the square roots of a number using the built_in function
def square_root(a):
    x = math.sqrt(a)
    return x

# below function gives the difference between thr toe functions above
def difference(a):
    d = square_root(a) - mysquare_root(a)
    return d


# Normally we can print the values as usual by giving selected no. of spaces between one and other values
# but, because of different float values, it is not possible to print uniformly as a table.
# In below function we use the decimal to over come the possibility.

def dec_1(a):

    # this function is to print the values of function 'mysquare_root()' uniformly as a table.
    # in order to access the decimals of a value we use 'Decimal' in_built function and we can round it off.
    d = Decimal(mysquare_root(a))
    #print(d)
    # here we are rounding off the decimal values to '15' after point.
    d1 = round(d, 15)
    #print(d1)
    # if we round off all the values, even perfect square will have '15' zeros after point. we don't want it.
    # so, we are rounding off the perfect square values to '0' decimal values after point
    if d1 - Decimal(mysquare_root(a)) == 0:
        d1 = round(d, 0)
        #print(d1)
        # in order to get one decimal value after point, simply we return a float value
        return float(d1)
    #print(d1)
    # we are return value which is rounded to certain values after point.
    return (d1)
#print(dec_1(2))

# the below function works same as above function, but for in_built method to find square root.
def dec_2(a):
    # This function is working for to print the values of function 'square_root()'
    d = Decimal(square_root(a))
    #print(d)
    d1 = round(d, 15)
    if d1 - Decimal(mysquare_root(a)) == 0:
        d1 = round(d, 0)
        return float(d1)
    #print(d1)
    return Decimal(d1)
#print(dec_2(2))

def print_it():
    # below two print statements arranged as per requirement.
    print("numbers", " "*14, 'mysquare_root', ' '*8, 'square_root', ' '*10, "difference")
    print("-------", " " * 14, '-------------', ' ' * 8, '-----------', ' ' * 10, "----------")
    for a in range(1, 10):
        # here we are going to print square roots 1-9
        # here we are giving the 18 spaces between the one float value to another in table.
        # if there is only 15 decimal values after point, we already covered 14 position after float value, so we will give 4 spaces
        # here to do spacing between values, we just comparing float value and int value to get how much space is needed.

        print(float(a), " " * 18, f'{dec_1(a)}', " "*18 if dec_1(a) == int(dec_1(a)) else " "* 4, f'{dec_2(a)}', " "*18 if dec_1(a) == int(dec_2(a)) else " "* 4, f"{difference(a)}")

print_it()

这是我的输出

numbers                mysquare_root          square_root            difference
-------                -------------          -----------            ----------
1.0                    1.0                    1.0                    0.0
2.0                    1.414213562373095      1.414213562373095      2.220446049250313e-16
3.0                    1.732050807568877      1.732050807568877      0.0
4.0                    2.0                    2.0                    0.0
5.0                    2.236067977499790      2.236067977499790      0.0
6.0                    2.449489742783178      2.449489742783178      0.0
7.0                    2.645751311064591      2.645751311064591      0.0
8.0                    2.828427124746190      2.828427124746190      4.440892098500626e-16
9.0                    3.0                    3.0                    0.0

我试图让您清楚了解这段代码。我希望你会得到它。

试试这个代码,它会生成最接近您需要的格式:

import math
epsilon= 0.00000000001

def mysqrt(a):
  x= a/2
  while True:
      y = (x + a/x) / 2
      if abs(y-x) < epsilon:
        return y
        break
      x = y

def right_digit(n):
  '''Takes a floating point number and returns its right
  most digit in 'str' format'''
  trunc= f'{n:.11f}'
  dig= trunc[len(trunc)-1] 
  return dig

def test_square_root(n):
  print('a', ' '*1, 'mysqrt(a)', ' '*3, 'math.sqrt(a)', ' diff')
  print('-', ' '*1, '-'*9, ' '*3, '-'*12, ' ' + '-'*4)
  
  for i in range(9):
    x= i+1
    
    print(f'{x:0.1f}', end=' ') 
    
    if mysqrt(x)- int(mysqrt(x)) < 0.001:
      y=1      
    elif right_digit(mysqrt(x)) == '0':
      y=10
    else:
      y=11
      
    print(f'{mysqrt(x):<13.{y}f}', end=' ')
    print(f'{mysqrt(x):<13.{y}f}', end=' ')

    diff= math.sqrt(x) - mysqrt(x)
    print(f'{diff:.12g}')

test_square_root(9)

结果 table 看起来像这样:

a   mysqrt(a)     math.sqrt(a)  diff
-   ---------     ------------  ----
1.0 1.0           1.0           0
2.0 1.41421356237 1.41421356237 2.22044604925e-16
3.0 1.73205080757 1.73205080757 0
4.0 2.0           2.0           0
5.0 2.2360679775  2.2360679775  0
6.0 2.44948974278 2.44948974278 0
7.0 2.64575131106 2.64575131106 0
8.0 2.82842712475 2.82842712475 4.4408920985e-16
9.0 3.0           3.0           0

我使用 f-strings 来格式化这个 table 但你也可以使用 .format() 方法。有 2 种特殊情况需要牢记:

  1. 任何完全平方数的平方根必须有一个小数点(适用于 1,4,9)
  2. 最左边的小数位不能为零(适用于5)

您可以在上面的代码中看到 test_square_root 函数中包含 3 个条件语句来处理这些问题。