Scipy Multivariate Normal:如何绘制确定性样本?
Scipy Multivariate Normal: How to draw deterministic samples?
我正在使用 Scipy.stats.multivariate_normal 从多元正态分布中抽取样本。像这样:
from scipy.stats import multivariate_normal
# Assume we have means and covs
mn = multivariate_normal(mean = means, cov = covs)
# Generate some samples
samples = mn.rvs()
每个 运行 的样本都不同。我如何获得始终相同的样本?
我期待的是:
mn = multivariate_normal(mean = means, cov = covs, seed = aNumber)
或
samples = mn.rsv(seed = aNumber)
有两种方式:
rvs()
方法接受一个 random_state
参数。它的价值可以
是整数种子,或 numpy.random.RandomState
的实例。在
这个例子,我使用整数种子:
In [46]: mn = multivariate_normal(mean=[0,0,0], cov=[1, 5, 25])
In [47]: mn.rvs(size=5, random_state=12345)
Out[47]:
array([[-0.51943872, 1.07094986, -1.0235383 ],
[ 1.39340583, 4.39561899, -2.77865152],
[ 0.76902257, 0.63000355, 0.46453938],
[-1.29622111, 2.25214387, 6.23217368],
[ 1.35291684, 0.51186476, 1.37495817]])
In [48]: mn.rvs(size=5, random_state=12345)
Out[48]:
array([[-0.51943872, 1.07094986, -1.0235383 ],
[ 1.39340583, 4.39561899, -2.77865152],
[ 0.76902257, 0.63000355, 0.46453938],
[-1.29622111, 2.25214387, 6.23217368],
[ 1.35291684, 0.51186476, 1.37495817]])
您可以为 numpy 的全局随机数生成器设置种子。如果未给出 random_state
,这是 multivariate_normal.rvs()
使用的生成器:
In [54]: mn = multivariate_normal(mean=[0,0,0], cov=[1, 5, 25])
In [55]: np.random.seed(123)
In [56]: mn.rvs(size=5)
Out[56]:
array([[ 0.2829785 , 2.23013222, -5.42815302],
[ 1.65143654, -1.2937895 , -7.53147357],
[ 1.26593626, -0.95907779, -12.13339622],
[ -0.09470897, -1.51803558, -4.33370201],
[ -0.44398196, -1.4286283 , 7.45694813]])
In [57]: np.random.seed(123)
In [58]: mn.rvs(size=5)
Out[58]:
array([[ 0.2829785 , 2.23013222, -5.42815302],
[ 1.65143654, -1.2937895 , -7.53147357],
[ 1.26593626, -0.95907779, -12.13339622],
[ -0.09470897, -1.51803558, -4.33370201],
[ -0.44398196, -1.4286283 , 7.45694813]])
我正在使用 Scipy.stats.multivariate_normal 从多元正态分布中抽取样本。像这样:
from scipy.stats import multivariate_normal
# Assume we have means and covs
mn = multivariate_normal(mean = means, cov = covs)
# Generate some samples
samples = mn.rvs()
每个 运行 的样本都不同。我如何获得始终相同的样本? 我期待的是:
mn = multivariate_normal(mean = means, cov = covs, seed = aNumber)
或
samples = mn.rsv(seed = aNumber)
有两种方式:
rvs()
方法接受一个random_state
参数。它的价值可以 是整数种子,或numpy.random.RandomState
的实例。在 这个例子,我使用整数种子:In [46]: mn = multivariate_normal(mean=[0,0,0], cov=[1, 5, 25]) In [47]: mn.rvs(size=5, random_state=12345) Out[47]: array([[-0.51943872, 1.07094986, -1.0235383 ], [ 1.39340583, 4.39561899, -2.77865152], [ 0.76902257, 0.63000355, 0.46453938], [-1.29622111, 2.25214387, 6.23217368], [ 1.35291684, 0.51186476, 1.37495817]]) In [48]: mn.rvs(size=5, random_state=12345) Out[48]: array([[-0.51943872, 1.07094986, -1.0235383 ], [ 1.39340583, 4.39561899, -2.77865152], [ 0.76902257, 0.63000355, 0.46453938], [-1.29622111, 2.25214387, 6.23217368], [ 1.35291684, 0.51186476, 1.37495817]])
您可以为 numpy 的全局随机数生成器设置种子。如果未给出
random_state
,这是multivariate_normal.rvs()
使用的生成器:In [54]: mn = multivariate_normal(mean=[0,0,0], cov=[1, 5, 25]) In [55]: np.random.seed(123) In [56]: mn.rvs(size=5) Out[56]: array([[ 0.2829785 , 2.23013222, -5.42815302], [ 1.65143654, -1.2937895 , -7.53147357], [ 1.26593626, -0.95907779, -12.13339622], [ -0.09470897, -1.51803558, -4.33370201], [ -0.44398196, -1.4286283 , 7.45694813]]) In [57]: np.random.seed(123) In [58]: mn.rvs(size=5) Out[58]: array([[ 0.2829785 , 2.23013222, -5.42815302], [ 1.65143654, -1.2937895 , -7.53147357], [ 1.26593626, -0.95907779, -12.13339622], [ -0.09470897, -1.51803558, -4.33370201], [ -0.44398196, -1.4286283 , 7.45694813]])