用 python 求解超越方程组

Solving a system of transcendental equations with python

假设我有以下四个等式:

  1. cos(x)/x = a
  2. cos(y)/y = b
  3. a + b = 1
  4. c sinc(x) = d sinc(y)

对于未知变量 x, y, ab。请注意 cos(x)/x=a 有多个解决方案。变量 y 也是如此。我只对 xy 值感兴趣,它们是第一个正根(如果重要的话)。

您可以安全地假设 a, b, cd 是已知的实常数,都是正数。

在 Mathematica 中,解决这个问题的代码类似于:

FindRoot[{Cos[x]/x == 0.2 a + 0.1, 
          Cos[y]/y == 0.2 b + 0.1, 
          a + b == 1.0, 
           1.03*Sinc[x] == Sinc[y]*1.02}, 
          {{x, .1}, {y, .1}, {a, .3}, {b, .1}}]

因此 returns

{x -> 1.31636, y -> 1.29664, a -> 0.456034, b -> 0.543966}

虽然这很容易,但我不知道如何在 python 中做类似的事情。因此,如果有人可以指导我(或简单地告诉我如何)解决这个问题,我将不胜感激。

您可以使用 root:

import numpy as np
from scipy.optimize import root

def your_funcs(X):

    x, y, a, b = X

    f = [np.cos(x) / x - 0.2 * a - 0.1,
         np.cos(y) / y - 0.2 * b - 0.1,
         a + b - 1,
         1.03 * np.sinc(x) - 1.02 * np.sinc(y)]

    return f

sol2 = root(your_funcs, [0.1, 0.1, 0.3, 0.1])
print(sol2.x)

将打印

[ 1.30301572  1.30987969  0.51530547  0.48469453]

您的函数必须以计算结果为 0 的方式定义,例如a + b - 1 而不是 a + b = 1.

快速检查:

print(your_funcs(sol2.x))

给予

[-1.9356960478944529e-11, 1.8931356482454476e-11, 0.0, -4.1039033282785908e-11]

所以,解法应该可以了(请注意e-11基本为0)

或者,您也可以使用 fsolve:

from scipy.optimize import fsolve

sol3 = fsolve(your_funcs, [0.1, 0.1, 0.3, 0.1])

结果相同:

[ 1.30301572  1.30987969  0.51530547  0.48469453]

您可以使用 args 参数传递额外的参数:

def your_funcs(X, fac_a, fac_b):

    x, y, a, b = X

    f = [np.cos(x) / x - fac_a * a - 0.1,
         np.cos(y) / y - fac_b * b - 0.1,
         a + b - 1,
         1.03 * np.sinc(x) - 1.02 * np.sinc(y)]

    return f

sol2 = root(your_funcs, [0.1, 0.1, 0.3, 0.1], args=(0.2, 0.2))
print(sol2.x)

这给你 "old" 输出:

[ 1.30301572  1.30987969  0.51530547  0.48469453]

如果你运行

sol2 = root(your_funcs, [0.1, 0.1, 0.3, 0.1], args=(0.4, 0.2))
print(sol2.x)

然后您将收到:

[ 1.26670224  1.27158794  0.34096159  0.65903841]