R - H2O- 我怎样才能得到我训练好的模型 predictions/probabilities?

R - H2O- How can I get my trained model predictions/probabilities?

我是 运行 H2O R 中的分类模型。我想为我的训练数据集提取拟合模型预测。

代码:

train <- as.h2o(train)
test <- as.h2o(test)
y <- "class"
x <- setdiff(names(train), y)
family <- "multinomial"
nfolds <- 5 
gbm1 <- h2o.gbm(x = x, y = y, distribution = family,
            training_frame = train,
            seed = 1,
            nfolds = nfolds,
            fold_assignment = "Modulo",
            keep_cross_validation_predictions = TRUE)
h2o.getFrame(gbm1@model$cross_validation_predictions[[gbm1@allparameters$nfolds]]$name)[,2:4]

这是一个简单的示例,说明如何从 R 中经过训练的 H2O 模型中提取交叉验证的预测(使用 Iris 数据集)。

library(h2o)
h2o.init(nthreads = -1)

data(iris)
train <- as.h2o(iris)
y <- "Species"
x <- setdiff(names(train), y)
family <- "multinomial"
nfolds <- 5 

gbm1 <- h2o.gbm(x = x, y = y, 
                distribution = family,
                training_frame = train,
                seed = 1,
                nfolds = nfolds,
                fold_assignment = "Modulo",
                keep_cross_validation_predictions = TRUE)

cvpreds_id <- gbm1@model$cross_validation_holdout_predictions_frame_id$name
cvpreds <- h2o.getFrame(cvpreds_id)

cvpreds 对象是一个 H2OFrame,如下所示:

> cvpreds
  predict    setosa   versicolor    virginica
1  setosa 0.9986012 0.0008965135 0.0005022631
2  setosa 0.9985695 0.0004486762 0.0009818434
3  setosa 0.9981387 0.0004777671 0.0013835724
4  setosa 0.9985246 0.0006259377 0.0008494549
5  setosa 0.9989924 0.0005033832 0.0005042294
6  setosa 0.9981410 0.0013581692 0.0005008536

[150 rows x 4 columns]