将一个大 json 文件拆分为多个较小的文件
Split a large json file into multiple smaller files
我有一个很大的 JSON 文件,大约有 500 万条记录,文件大小约为 32GB,我需要将其加载到我们的 Snowflake 数据仓库中。我需要将这个文件分解成每个文件大约 200k 条记录(大约 1.25GB)的块。我想在 Node.JS 或 Python 中执行此操作以部署到 AWS Lambda 函数,不幸的是我还没有编码。我有 C# 和很多 SQL 经验,学习节点和 python 在我的待办事项清单上,所以为什么不直接投入,对吧!?
我的第一个问题是"Which language would better serve this function? Python, or Node.JS?"
我知道我不想将整个 JSON 文件读入内存(甚至是输出 smaller 文件)。我需要能够 "stream" 它在 和 中根据记录数 (200k) 输出到新文件中,正确关闭 json 对象,并且继续进入另一个 200k 的新文件,依此类推。我知道 Node 可以做到这一点,但如果 Python 也可以做到这一点,我觉得快速开始使用我很快就会做的其他 ETL 事情会更容易。
我的第二个问题是“根据您上面的建议,您能否也推荐我应该 require/import 哪些模块来帮助我入门?主要是因为它与不提取整个 json 文件有关进入记忆?也许是一些提示、技巧,或者“你会怎么做?如果你真的很慷慨,一些代码示例可以帮助我深入研究这个问题?
我不能包含 JSON 数据的样本,因为它包含个人信息。但我可以提供 JSON 架构 ...
{
"$schema": "http://json-schema.org/draft-04/schema#",
"items": {
"properties": {
"activities": {
"properties": {
"activity_id": {
"items": {
"type": "integer"
},
"type": "array"
},
"frontlineorg_id": {
"items": {
"type": "integer"
},
"type": "array"
},
"import_id": {
"items": {
"type": "integer"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"is_source": {
"items": {
"type": "boolean"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"address": {
"properties": {
"city": {
"items": {
"type": "string"
},
"type": "array"
},
"congress_dist_name": {
"items": {
"type": "string"
},
"type": "array"
},
"congress_dist_number": {
"items": {
"type": "integer"
},
"type": "array"
},
"congress_end_yr": {
"items": {
"type": "integer"
},
"type": "array"
},
"congress_number": {
"items": {
"type": "integer"
},
"type": "array"
},
"congress_start_yr": {
"items": {
"type": "integer"
},
"type": "array"
},
"county": {
"items": {
"type": "string"
},
"type": "array"
},
"formatted": {
"items": {
"type": "string"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"latitude": {
"items": {
"type": "number"
},
"type": "array"
},
"longitude": {
"items": {
"type": "number"
},
"type": "array"
},
"number": {
"items": {
"type": "string"
},
"type": "array"
},
"observes_dst": {
"items": {
"type": "boolean"
},
"type": "array"
},
"post_directional": {
"items": {
"type": "null"
},
"type": "array"
},
"pre_directional": {
"items": {
"type": "null"
},
"type": "array"
},
"school_district": {
"items": {
"properties": {
"school_dist_name": {
"items": {
"type": "string"
},
"type": "array"
},
"school_dist_type": {
"items": {
"type": "string"
},
"type": "array"
},
"school_grade_high": {
"items": {
"type": "string"
},
"type": "array"
},
"school_grade_low": {
"items": {
"type": "string"
},
"type": "array"
},
"school_lea_code": {
"items": {
"type": "integer"
},
"type": "array"
}
},
"type": "object"
},
"type": "array"
},
"secondary_number": {
"items": {
"type": "null"
},
"type": "array"
},
"secondary_unit": {
"items": {
"type": "null"
},
"type": "array"
},
"state": {
"items": {
"type": "string"
},
"type": "array"
},
"state_house_dist_name": {
"items": {
"type": "string"
},
"type": "array"
},
"state_house_dist_number": {
"items": {
"type": "integer"
},
"type": "array"
},
"state_senate_dist_name": {
"items": {
"type": "string"
},
"type": "array"
},
"state_senate_dist_number": {
"items": {
"type": "integer"
},
"type": "array"
},
"street": {
"items": {
"type": "string"
},
"type": "array"
},
"suffix": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"timezone": {
"items": {
"type": "string"
},
"type": "array"
},
"utc_offset": {
"items": {
"type": "integer"
},
"type": "array"
},
"zip": {
"items": {
"type": "integer"
},
"type": "array"
}
},
"type": "object"
},
"age": {
"type": "integer"
},
"anniversary": {
"properties": {
"date": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"baptism": {
"properties": {
"church_id": {
"type": "null"
},
"date": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"birth_dd": {
"type": "integer"
},
"birth_mm": {
"type": "integer"
},
"birth_yyyy": {
"type": "integer"
},
"church_attendance": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"likelihood": {
"items": {
"type": "integer"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"cohabiting": {
"properties": {
"confidence": {
"items": {
"type": "string"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"likelihood": {
"items": {
"type": "null"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"dating": {
"properties": {
"bool": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"divorced": {
"properties": {
"bool": {
"items": {
"type": "null"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"likelihood_considering": {
"items": {
"type": "integer"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"education": {
"properties": {
"est_level": {
"items": {
"type": "string"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"email": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"is_work_school": {
"items": {
"type": "boolean"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"engaged": {
"properties": {
"insert_datetime_utc": {
"type": "null"
},
"likelihood": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"est_income": {
"properties": {
"est_level": {
"items": {
"type": "string"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"ethnicity": {
"type": "string"
},
"first_name": {
"type": "string"
},
"formatted_birthdate": {
"type": "string"
},
"gender": {
"type": "string"
},
"head_of_household": {
"properties": {
"bool": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"home_church": {
"properties": {
"church_id": {
"type": "null"
},
"group_participant": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"is_coaching": {
"type": "null"
},
"is_giving": {
"type": "null"
},
"is_serving": {
"type": "null"
},
"membership_date": {
"type": "null"
},
"regular_attendee": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"hub_poid": {
"type": "integer"
},
"insert_datetime_utc": {
"type": "string"
},
"ip_address": {
"properties": {
"insert_datetime_utc": {
"type": "null"
},
"string": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"last_name": {
"type": "string"
},
"marriage_segment": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"married": {
"properties": {
"bool": {
"items": {
"type": "boolean"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"middle_name": {
"type": "string"
},
"miscellaneous": {
"properties": {
"attribute": {
"items": {
"type": "string"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"value": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"name_suffix": {
"type": "null"
},
"name_title": {
"type": "null"
},
"newlywed": {
"properties": {
"bool": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"parent": {
"properties": {
"bool": {
"items": {
"type": "boolean"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"likelihood_expecting": {
"items": {
"type": "integer"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"person_id": {
"type": "integer"
},
"phone": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"number": {
"items": {
"type": "integer"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"type": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"property_rights": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"psychographic_cluster": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"religion": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"religious_segment": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"separated": {
"properties": {
"bool": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"significant_other": {
"properties": {
"first_name": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"last_name": {
"type": "null"
},
"middle_name": {
"type": "null"
},
"name_suffix": {
"type": "null"
},
"name_title": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"suppressed_datetime_utc": {
"type": "string"
},
"target_group": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
}
},
"type": "object"
},
"type": "array"
}
回答 Python 或 Node 是否更适合这项任务的问题将是一种意见,我们不能在 Stack Overflow 上发表意见。你必须自己决定你在什么方面有更多经验以及你想使用什么 - Python 或 Node.
如果您使用 Node,有一些模块可以帮助您完成该任务,即进行流式 JSON 解析。例如。这些模块:
- https://www.npmjs.com/package/JSONStream
- https://www.npmjs.com/package/stream-json
- https://www.npmjs.com/package/json-stream
如果您使用 Python,这里还有流式 JSON 解析器:
在 linux 命令提示符中使用此代码
split -b 53750k <your-file>
cat xa* > <your-file>
参考这个link:
https://askubuntu.com/questions/28847/text-editor-to-edit-large-4-3-gb-plain-text-file
考虑使用 jq 预处理您的 json 文件
它可以拆分和流式传输您的大型 json 文件
jq is like sed for JSON data - you can use it to slice
and filter and map and transform structured data with
the same ease that sed, awk, grep and friends let you play with text.
查看 official documentation and this 了解更多。
额外:对于你的第一个问题,jq 是用 C 编写的,它比 python/node 快,不是吗?
雪花有一个very special treatment for JSON,如果我们了解它们,就很容易画出设计图。
- JSON/Parquet/Avro/XML被认为是半结构化数据
- 它们在 Snowflake 中存储为 Variant 数据类型。
在将 JSON 数据加载到阶段位置时,标记 strip_outer_array=true
copy into <table>
from @~/<file>.json
file_format = (type = 'JSON' strip_outer_array = true);
雪花加载时每行大小压缩后不能超过16Mb。
- 雪花数据加载works well 如果文件大小在 10-100Mb 范围内拆分。
使用 utilities 可以根据每行拆分文件,文件大小注意超过 100Mb,这为您的数据带来了并行性和准确性。
根据您的数据集大小,您将获得大约 31K 个小文件(大小为 100Mb)。
- 意思是31k的并行进程运行,但是,不可能。
- 所以选择一个超大型仓库(16 v-core & 32 threads)
- 31k/32 =(大约)1000 发
- 根据您的网络带宽加载数据不会超过几分钟。即使我们想到每轮3秒,它也可能在50分钟内加载数据。
查看仓库配置&throughput details and refer semi-structured data loading best practice。
对我有用的最简单的方法是:
json_file = <your_file>
chunks = 200
for i in range(0,len(json_file), chunks):
print(json_file[i:i+chunks])
使用 bash 同时拆分和压缩,每个文件约 100MB:
cat bigfile.json | split -C 1000000000 -d -a4 - output_prefix --filter='gzip > $FILE.gz'
查看更多:
我有一个很大的 JSON 文件,大约有 500 万条记录,文件大小约为 32GB,我需要将其加载到我们的 Snowflake 数据仓库中。我需要将这个文件分解成每个文件大约 200k 条记录(大约 1.25GB)的块。我想在 Node.JS 或 Python 中执行此操作以部署到 AWS Lambda 函数,不幸的是我还没有编码。我有 C# 和很多 SQL 经验,学习节点和 python 在我的待办事项清单上,所以为什么不直接投入,对吧!?
我的第一个问题是"Which language would better serve this function? Python, or Node.JS?"
我知道我不想将整个 JSON 文件读入内存(甚至是输出 smaller 文件)。我需要能够 "stream" 它在 和 中根据记录数 (200k) 输出到新文件中,正确关闭 json 对象,并且继续进入另一个 200k 的新文件,依此类推。我知道 Node 可以做到这一点,但如果 Python 也可以做到这一点,我觉得快速开始使用我很快就会做的其他 ETL 事情会更容易。
我的第二个问题是“根据您上面的建议,您能否也推荐我应该 require/import 哪些模块来帮助我入门?主要是因为它与不提取整个 json 文件有关进入记忆?也许是一些提示、技巧,或者“你会怎么做?如果你真的很慷慨,一些代码示例可以帮助我深入研究这个问题?
我不能包含 JSON 数据的样本,因为它包含个人信息。但我可以提供 JSON 架构 ...
{
"$schema": "http://json-schema.org/draft-04/schema#",
"items": {
"properties": {
"activities": {
"properties": {
"activity_id": {
"items": {
"type": "integer"
},
"type": "array"
},
"frontlineorg_id": {
"items": {
"type": "integer"
},
"type": "array"
},
"import_id": {
"items": {
"type": "integer"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"is_source": {
"items": {
"type": "boolean"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"address": {
"properties": {
"city": {
"items": {
"type": "string"
},
"type": "array"
},
"congress_dist_name": {
"items": {
"type": "string"
},
"type": "array"
},
"congress_dist_number": {
"items": {
"type": "integer"
},
"type": "array"
},
"congress_end_yr": {
"items": {
"type": "integer"
},
"type": "array"
},
"congress_number": {
"items": {
"type": "integer"
},
"type": "array"
},
"congress_start_yr": {
"items": {
"type": "integer"
},
"type": "array"
},
"county": {
"items": {
"type": "string"
},
"type": "array"
},
"formatted": {
"items": {
"type": "string"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"latitude": {
"items": {
"type": "number"
},
"type": "array"
},
"longitude": {
"items": {
"type": "number"
},
"type": "array"
},
"number": {
"items": {
"type": "string"
},
"type": "array"
},
"observes_dst": {
"items": {
"type": "boolean"
},
"type": "array"
},
"post_directional": {
"items": {
"type": "null"
},
"type": "array"
},
"pre_directional": {
"items": {
"type": "null"
},
"type": "array"
},
"school_district": {
"items": {
"properties": {
"school_dist_name": {
"items": {
"type": "string"
},
"type": "array"
},
"school_dist_type": {
"items": {
"type": "string"
},
"type": "array"
},
"school_grade_high": {
"items": {
"type": "string"
},
"type": "array"
},
"school_grade_low": {
"items": {
"type": "string"
},
"type": "array"
},
"school_lea_code": {
"items": {
"type": "integer"
},
"type": "array"
}
},
"type": "object"
},
"type": "array"
},
"secondary_number": {
"items": {
"type": "null"
},
"type": "array"
},
"secondary_unit": {
"items": {
"type": "null"
},
"type": "array"
},
"state": {
"items": {
"type": "string"
},
"type": "array"
},
"state_house_dist_name": {
"items": {
"type": "string"
},
"type": "array"
},
"state_house_dist_number": {
"items": {
"type": "integer"
},
"type": "array"
},
"state_senate_dist_name": {
"items": {
"type": "string"
},
"type": "array"
},
"state_senate_dist_number": {
"items": {
"type": "integer"
},
"type": "array"
},
"street": {
"items": {
"type": "string"
},
"type": "array"
},
"suffix": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"timezone": {
"items": {
"type": "string"
},
"type": "array"
},
"utc_offset": {
"items": {
"type": "integer"
},
"type": "array"
},
"zip": {
"items": {
"type": "integer"
},
"type": "array"
}
},
"type": "object"
},
"age": {
"type": "integer"
},
"anniversary": {
"properties": {
"date": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"baptism": {
"properties": {
"church_id": {
"type": "null"
},
"date": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"birth_dd": {
"type": "integer"
},
"birth_mm": {
"type": "integer"
},
"birth_yyyy": {
"type": "integer"
},
"church_attendance": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"likelihood": {
"items": {
"type": "integer"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"cohabiting": {
"properties": {
"confidence": {
"items": {
"type": "string"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"likelihood": {
"items": {
"type": "null"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"dating": {
"properties": {
"bool": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"divorced": {
"properties": {
"bool": {
"items": {
"type": "null"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"likelihood_considering": {
"items": {
"type": "integer"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"education": {
"properties": {
"est_level": {
"items": {
"type": "string"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"email": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"is_work_school": {
"items": {
"type": "boolean"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"engaged": {
"properties": {
"insert_datetime_utc": {
"type": "null"
},
"likelihood": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"est_income": {
"properties": {
"est_level": {
"items": {
"type": "string"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"ethnicity": {
"type": "string"
},
"first_name": {
"type": "string"
},
"formatted_birthdate": {
"type": "string"
},
"gender": {
"type": "string"
},
"head_of_household": {
"properties": {
"bool": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"home_church": {
"properties": {
"church_id": {
"type": "null"
},
"group_participant": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"is_coaching": {
"type": "null"
},
"is_giving": {
"type": "null"
},
"is_serving": {
"type": "null"
},
"membership_date": {
"type": "null"
},
"regular_attendee": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"hub_poid": {
"type": "integer"
},
"insert_datetime_utc": {
"type": "string"
},
"ip_address": {
"properties": {
"insert_datetime_utc": {
"type": "null"
},
"string": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"last_name": {
"type": "string"
},
"marriage_segment": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"married": {
"properties": {
"bool": {
"items": {
"type": "boolean"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"middle_name": {
"type": "string"
},
"miscellaneous": {
"properties": {
"attribute": {
"items": {
"type": "string"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"value": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"name_suffix": {
"type": "null"
},
"name_title": {
"type": "null"
},
"newlywed": {
"properties": {
"bool": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"parent": {
"properties": {
"bool": {
"items": {
"type": "boolean"
},
"type": "array"
},
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"likelihood_expecting": {
"items": {
"type": "integer"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"person_id": {
"type": "integer"
},
"phone": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"number": {
"items": {
"type": "integer"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"type": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"property_rights": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"psychographic_cluster": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"religion": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"religious_segment": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"separated": {
"properties": {
"bool": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"significant_other": {
"properties": {
"first_name": {
"type": "null"
},
"insert_datetime_utc": {
"type": "null"
},
"last_name": {
"type": "null"
},
"middle_name": {
"type": "null"
},
"name_suffix": {
"type": "null"
},
"name_title": {
"type": "null"
},
"suppressed_datetime_utc": {
"type": "null"
}
},
"type": "object"
},
"suppressed_datetime_utc": {
"type": "string"
},
"target_group": {
"properties": {
"insert_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
},
"string": {
"items": {
"type": "string"
},
"type": "array"
},
"suppressed_datetime_utc": {
"items": {
"type": "string"
},
"type": "array"
}
},
"type": "object"
}
},
"type": "object"
},
"type": "array"
}
回答 Python 或 Node 是否更适合这项任务的问题将是一种意见,我们不能在 Stack Overflow 上发表意见。你必须自己决定你在什么方面有更多经验以及你想使用什么 - Python 或 Node.
如果您使用 Node,有一些模块可以帮助您完成该任务,即进行流式 JSON 解析。例如。这些模块:
- https://www.npmjs.com/package/JSONStream
- https://www.npmjs.com/package/stream-json
- https://www.npmjs.com/package/json-stream
如果您使用 Python,这里还有流式 JSON 解析器:
在 linux 命令提示符中使用此代码
split -b 53750k <your-file>
cat xa* > <your-file>
参考这个link: https://askubuntu.com/questions/28847/text-editor-to-edit-large-4-3-gb-plain-text-file
考虑使用 jq 预处理您的 json 文件
它可以拆分和流式传输您的大型 json 文件
jq is like sed for JSON data - you can use it to slice
and filter and map and transform structured data with
the same ease that sed, awk, grep and friends let you play with text.
查看 official documentation and this
额外:对于你的第一个问题,jq 是用 C 编写的,它比 python/node 快,不是吗?
雪花有一个very special treatment for JSON,如果我们了解它们,就很容易画出设计图。
- JSON/Parquet/Avro/XML被认为是半结构化数据
- 它们在 Snowflake 中存储为 Variant 数据类型。
在将 JSON 数据加载到阶段位置时,标记 strip_outer_array=true
copy into <table> from @~/<file>.json file_format = (type = 'JSON' strip_outer_array = true);
雪花加载时每行大小压缩后不能超过16Mb。
- 雪花数据加载works well 如果文件大小在 10-100Mb 范围内拆分。
使用 utilities 可以根据每行拆分文件,文件大小注意超过 100Mb,这为您的数据带来了并行性和准确性。
根据您的数据集大小,您将获得大约 31K 个小文件(大小为 100Mb)。
- 意思是31k的并行进程运行,但是,不可能。
- 所以选择一个超大型仓库(16 v-core & 32 threads)
- 31k/32 =(大约)1000 发
- 根据您的网络带宽加载数据不会超过几分钟。即使我们想到每轮3秒,它也可能在50分钟内加载数据。
查看仓库配置&throughput details and refer semi-structured data loading best practice。
对我有用的最简单的方法是:
json_file = <your_file>
chunks = 200
for i in range(0,len(json_file), chunks):
print(json_file[i:i+chunks])
使用 bash 同时拆分和压缩,每个文件约 100MB:
cat bigfile.json | split -C 1000000000 -d -a4 - output_prefix --filter='gzip > $FILE.gz'
查看更多: