通过分组和子分组变量找到平均值,并计算一个值在 R 中的这些组中出现的次数

Find the average values by grouping and sub-grouping variables, and count of the number of times a value occurs within these groups in R

我有一个包含四列数据的数据集。

我想按两个变量对行进行分组,按一个变量对列进行分组

这是我的数据示例

df <- data.frame(
Price = rnorm(24), 
Grouping = rep(c("CD", "NW", "SMK", "ghd"),6),
Sub_grouping = c("CDapple", "NWapple", "SMKapple", "ghdapple",
               "CDPear", "NWpear", "SMKpear", "ghdpear",
               "CDgrape",  "NWgrape", "SMKgrape", "ghdgrape",
               "CDapple", "NWapple", "SMKapple", "ghdapple",
               "CDPear", "NWpear", "SMKpear", "ghdpear",
               "CDgrape",  "NWgrape", "SMKgrape", "ghdgrape"),
SP = rep(c("SP", "OffSP"),12))

要获得每个子组的价格变量的平均值,我可以运行以下操作:

df <- melt(df)
df_mean <- dcast(df, Grouping + Sub_grouping ~ SP, value.var = "value",  fun.aggregate = mean)

我还想要每个分组变量的价格平均值。这可能吗?

我还想计算输入每个平均价格的价格值的数量。因此,对于每个组,按 SP 和 OffSP,输入的价格数量;对于每个 sub_group,由 SP 和 OffSP 提供的价格数量。

有人知道怎么做吗?

我看过这些问题 How can I count the number of instances a value occurs within a subgroup in R? 但是他们的偶然事件 table 是 2x2,我需要一个 table 以分组和子组为行,以 SP / OffSP 为列。

谢谢

我们不需要将其重塑为 'long' 格式来获得 mean

library(dplyr)
df %>% 
   group_by(Grouping) %>% #first grouping
   #create the mean column and the count by 'Grouping'
   mutate(AvgPrice = mean(Price), n1 = n()) %>% 
   group_by(Sub_grouping, add= TRUE) %>% #second grouping
   #summarise to get the mean within Sub_grouping and count the values with n()
   summarise(AvgPrice = first(AvgPrice), n1 = first(n1), AvgPrice2 = mean(Price), n2 = n())

注意:如果我们还需要按 'SP' 分组,则将第一个 group_by 语句更改为

df
  %>%
   group_by(Grouping, SP) %>%
   ...
   ...

如果我们想为每个 'SP' 获取 meanlength 并希望作为单独的列,一个紧凑的选项是 dcast 来自 data.table它可以采用多个函数和多个 value.var

library(data.table)
dcast(setDT(df), Grouping + Sub_grouping ~ SP, value.var = "Price", c(mean, length))