使用邻接表表示最小生成树
Representing a minimum spanning tree using an adjacency list
我一直在尝试解决 class 的问题。问题是:
Given an undirected graph G, find the minimum spanning tree within G.
为了通过这个问题,我的函数必须接受 return 一个 邻接列表 。但是,我不确定如何将输入和输出表示为邻接列表。
from collections import defaultdict
class Graph:
def __init__(self,vertices):
self.V= vertices
self.graph = []
def Edge(self,u,v,w):
self.graph.append([u,v,w])
# A utility function to find set of an element i
def find(self, parent, i):
if parent[i] == i:
return i
return self.find(parent, parent[i])
# A function that does union of two sets of x and y
def union(self, parent, rank, x, y):
xroot = self.find(parent, x)
yroot = self.find(parent, y)
# Attach smaller rank tree under root of high rank tree
if rank[xroot] < rank[yroot]:
parent[xroot] = yroot
elif rank[xroot] > rank[yroot]:
parent[yroot] = xroot
# If ranks are same, then make one as root and increment rank by one
else :
parent[yroot] = xroot
rank[xroot] += 1
# The main function to build the MST
def Question3(G):
MST =[] # This will store the MST
e = 0 # An index variable used for MST[]
i = 0 # An index variable for sorted edges
G.graph = sorted(G.graph,key=lambda item: item[2])
parent = [] ; rank = []
# Create V subsets with single elements
for node in range(G.V):
parent.append(node)
rank.append(0)
# Edges to be taken is equal to V-1
while e < G.V -1 :
# Take smallest edge and increment the index
u,v,w = G.graph[i]
i = i + 1
x = G.find(parent, u)
y = G.find(parent ,v)
# If including this edge does't cause cycle, include it
# in result and increment the index of result for next edge
if x != y:
e = e + 1
MST.append([u,v,w])
G.union(parent, rank, x, y)
# Else discard the edge
print "Minimum Spanning Tree"
for u,v,weight in MST:
print ("%d -- %d == %d" % (u,v,weight))
g = Graph(4)
g.Edge(0, 1, 9)
g.Edge(0, 2, 6)
g.Edge(0, 3, 5)
g.Edge(1, 3, 12)
g.Edge(2, 3, 4)
g.Question3()
print """---End Question 3---
"""
假设您将最小生成树计算为称为 MST 的边列表。现在,MST 包含三元组 (u, v, weight)
。您可以做的是遍历 MST 中的边,并为每个这样的边 (u, v, weight)
将一个元组 (v, weight)
附加到 u
的邻接列表,并附加一个元组 (u, weight)
到 v
的邻接表。在伪代码中它可能看起来像这样:
adj = {} # your resulting adjacency lists, one for each vertex in the graph
for u, v, weight in MST:
if u not in adj:
adj[u] = []
adj[u].append((v, weight))
if v not in adj:
adj[v] = []
adj[v].append((u, weight))
我一直在尝试解决 class 的问题。问题是:
Given an undirected graph G, find the minimum spanning tree within G.
为了通过这个问题,我的函数必须接受 return 一个 邻接列表 。但是,我不确定如何将输入和输出表示为邻接列表。
from collections import defaultdict
class Graph:
def __init__(self,vertices):
self.V= vertices
self.graph = []
def Edge(self,u,v,w):
self.graph.append([u,v,w])
# A utility function to find set of an element i
def find(self, parent, i):
if parent[i] == i:
return i
return self.find(parent, parent[i])
# A function that does union of two sets of x and y
def union(self, parent, rank, x, y):
xroot = self.find(parent, x)
yroot = self.find(parent, y)
# Attach smaller rank tree under root of high rank tree
if rank[xroot] < rank[yroot]:
parent[xroot] = yroot
elif rank[xroot] > rank[yroot]:
parent[yroot] = xroot
# If ranks are same, then make one as root and increment rank by one
else :
parent[yroot] = xroot
rank[xroot] += 1
# The main function to build the MST
def Question3(G):
MST =[] # This will store the MST
e = 0 # An index variable used for MST[]
i = 0 # An index variable for sorted edges
G.graph = sorted(G.graph,key=lambda item: item[2])
parent = [] ; rank = []
# Create V subsets with single elements
for node in range(G.V):
parent.append(node)
rank.append(0)
# Edges to be taken is equal to V-1
while e < G.V -1 :
# Take smallest edge and increment the index
u,v,w = G.graph[i]
i = i + 1
x = G.find(parent, u)
y = G.find(parent ,v)
# If including this edge does't cause cycle, include it
# in result and increment the index of result for next edge
if x != y:
e = e + 1
MST.append([u,v,w])
G.union(parent, rank, x, y)
# Else discard the edge
print "Minimum Spanning Tree"
for u,v,weight in MST:
print ("%d -- %d == %d" % (u,v,weight))
g = Graph(4)
g.Edge(0, 1, 9)
g.Edge(0, 2, 6)
g.Edge(0, 3, 5)
g.Edge(1, 3, 12)
g.Edge(2, 3, 4)
g.Question3()
print """---End Question 3---
"""
假设您将最小生成树计算为称为 MST 的边列表。现在,MST 包含三元组 (u, v, weight)
。您可以做的是遍历 MST 中的边,并为每个这样的边 (u, v, weight)
将一个元组 (v, weight)
附加到 u
的邻接列表,并附加一个元组 (u, weight)
到 v
的邻接表。在伪代码中它可能看起来像这样:
adj = {} # your resulting adjacency lists, one for each vertex in the graph
for u, v, weight in MST:
if u not in adj:
adj[u] = []
adj[u].append((v, weight))
if v not in adj:
adj[v] = []
adj[v].append((u, weight))