Python (Pandas) 在多索引数据框的每一层添加小计

Python (Pandas) Add subtotal on each lvl of multiindex dataframe

假设我有以下数据框:

a       b       c      Sce1     Sce2    Sce3    Sce4    Sce5    Sc6
Animal  Ground  Dog    0.0      0.9     0.5     0.0     0.3     0.4  
Animal  Ground  Cat    0.6      0.5     0.3     0.5     1.0     0.2 
Animal  Air     Eagle  1.0      0.1     0.1     0.6     0.9     0.1 
Animal  Air     Owl    0.3      0.1     0.5     0.3     0.5     0.9     
Object  Metal   Car    0.3      0.3     0.8     0.6     0.5     0.6 
Object  Metal   Bike   0.5      0.1     0.4     0.7     0.4     0.2 
Object  Wood    Chair  0.9      0.6     0.1     0.9     0.2     0.8 
Object  Wood    Table  0.9      0.6     0.6     0.1     0.9     0.7 

我想创建一个 MultiIndex,它将包含每个 lvl 的总和。输出将如下所示:

a      b      c     Sce1    Sce2    Sce3    Sce4    Sce5    Sce6
Animal              1.9     1.6     1.4     1.3     2.7     1.6 
       Ground       0.6     1.4     0.8     0.5     1.3     0.6 
              Dog   0.0     0.9     0.5     0.0     0.3     0.4 
              Cat   0.6     0.5     0.3     0.5     1.0     0.2 
       Air          1.3     0.2     0.7     0.8     1.4     1.0 
              Eagle 1.0     0.1     0.1     0.6     0.9     0.1 
              Owl   0.3     0.1     0.5     0.3     0.5     0.9 
Object              2.6     1.6     1.8     2.3     2.0     2.3 
       Metal        0.8     0.3     1.1     1.3     0.9     0.8 
              Car   0.3     0.3     0.8     0.6     0.5     0.6 
              Bike  0.5     0.1     0.4     0.7     0.4     0.2 
       Wood         1.8     1.3     0.6     1.0     1.1     1.5 
              Chair 0.9     0.6     0.1     0.9     0.2     0.8 
              Table 0.9     0.6     0.6     0.1     0.9     0.7 

目前我正在使用循环在每个级别上创建三个不同的数据帧,然后在 excel 上操作它们,如下所示。所以我想尽可能在​​ python 中进行计算。

for i in range range(0,3):
    df = df.groupby(list(df.columns)[0:lvl], as_index=False).sum()
    return df

非常感谢。

您需要执行两次 group by 以获得每个聚合级别的小计。然后将它们添加回初始 DF。这是 related question

自由使用 MAGIC

pd.concat([
        df.assign(
            **{x: 'Total' for x in 'abc'[i:]}
        ).groupby(list('abc')).sum() for i in range(4)
    ]).sort_index()

                     Sce1  Sce2  Sce3  Sce4  Sce5  Sc6
a      b      c                                       
Animal Air    Eagle   1.0   0.1   0.1   0.6   0.9  0.1
              Owl     0.3   0.1   0.5   0.3   0.5  0.9
              Total   1.3   0.2   0.6   0.9   1.4  1.0
       Ground Cat     0.6   0.5   0.3   0.5   1.0  0.2
              Dog     0.0   0.9   0.5   0.0   0.3  0.4
              Total   0.6   1.4   0.8   0.5   1.3  0.6
       Total  Total   1.9   1.6   1.4   1.4   2.7  1.6
Object Metal  Bike    0.5   0.1   0.4   0.7   0.4  0.2
              Car     0.3   0.3   0.8   0.6   0.5  0.6
              Total   0.8   0.4   1.2   1.3   0.9  0.8
       Total  Total   2.6   1.6   1.9   2.3   2.0  2.3
       Wood   Chair   0.9   0.6   0.1   0.9   0.2  0.8
              Table   0.9   0.6   0.6   0.1   0.9  0.7
              Total   1.8   1.2   0.7   1.0   1.1  1.5
Total  Total  Total   4.5   3.2   3.3   3.7   4.7  3.9

我可以得到你想要的

pd.concat([
        df.assign(
            **{x: '' for x in 'abc'[i:]}
        ).groupby(list('abc')).sum() for i in range(1, 4)
    ]).sort_index()

                     Sce1  Sce2  Sce3  Sce4  Sce5  Sc6
a      b      c                                       
Animal                1.9   1.6   1.4   1.4   2.7  1.6
       Air            1.3   0.2   0.6   0.9   1.4  1.0
              Eagle   1.0   0.1   0.1   0.6   0.9  0.1
              Owl     0.3   0.1   0.5   0.3   0.5  0.9
       Ground         0.6   1.4   0.8   0.5   1.3  0.6
              Cat     0.6   0.5   0.3   0.5   1.0  0.2
              Dog     0.0   0.9   0.5   0.0   0.3  0.4
Object                2.6   1.6   1.9   2.3   2.0  2.3
       Metal          0.8   0.4   1.2   1.3   0.9  0.8
              Bike    0.5   0.1   0.4   0.7   0.4  0.2
              Car     0.3   0.3   0.8   0.6   0.5  0.6
       Wood           1.8   1.2   0.7   1.0   1.1  1.5
              Chair   0.9   0.6   0.1   0.9   0.2  0.8
              Table   0.9   0.6   0.6   0.1   0.9  0.7

至于如何!我将把它留作 reader.

的练习