在逻辑回归中找到给定概率的协变量的值
Find value of covariates given a probability in logistic regression
我有模型
am.glm = glm(formula=am ~ hp + I(mpg^2), data=mtcars, family=binomial)
这给出
> summary(am.glm)
Call:
glm(formula = am ~ hp + I(mpg^2), family = binomial, data = mtcars)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.5871 -0.5376 -0.1128 0.1101 1.6937
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -18.71428 8.45330 -2.214 0.0268 *
hp 0.04689 0.02367 1.981 0.0476 *
I(mpg^2) 0.02811 0.01273 2.207 0.0273 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 43.230 on 31 degrees of freedom
Residual deviance: 20.385 on 29 degrees of freedom
AIC: 26.385
Number of Fisher Scoring iterations: 7
给定 hp
的值,我想找到 mpg
的值,这将导致 am
的概率为 50%。
我还没有设法找到任何可用于输出此类预测的内容。我设法使用
编写了一些代码
#Coefficients
glm.intercept<-as.numeric(coef(am.glm)[1])
glm.hp.beta<-as.numeric(coef(am.glm)[2])
glm.mpg.sq.beta<-as.numeric(coef(am.glm)[3])
glm.hp.mpg.beta<-as.numeric(coef(am.glm)[4])
#Constants
prob=0.9
c<-log(prob/(1-prob))
hp=120
polyroot(c((glm.hp.beta*hp)+glm.intercept-c, glm.hp.mpg.beta*hp,glm.mpg.sq.beta))
有没有更优雅的方案?也许 predict
函数等效?
有趣的问题!
下面的解决方案怎么样?基本上,创建 newdata
您的目标变量正在对其观察值范围进行采样。预测这些值的向量,并找到满足您条件的最小值
# Your desired threshold
prob = 0.5
# Create a sampling vector
df_new <- data.frame(
hp = rep(120, times = 100),
mpg = seq(from = range(mtcars$mpg)[1],
to = range(mtcars$mpg)[2],
length.out = 100))
# Predict on sampling vector
df_new$am <- predict(am.glm, newdata = df_new)
# Find lowest value above threshold
df_new[min(which(df_new$am > prob)), 'mpg']
我有模型
am.glm = glm(formula=am ~ hp + I(mpg^2), data=mtcars, family=binomial)
这给出
> summary(am.glm)
Call:
glm(formula = am ~ hp + I(mpg^2), family = binomial, data = mtcars)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.5871 -0.5376 -0.1128 0.1101 1.6937
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -18.71428 8.45330 -2.214 0.0268 *
hp 0.04689 0.02367 1.981 0.0476 *
I(mpg^2) 0.02811 0.01273 2.207 0.0273 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 43.230 on 31 degrees of freedom
Residual deviance: 20.385 on 29 degrees of freedom
AIC: 26.385
Number of Fisher Scoring iterations: 7
给定 hp
的值,我想找到 mpg
的值,这将导致 am
的概率为 50%。
我还没有设法找到任何可用于输出此类预测的内容。我设法使用
编写了一些代码#Coefficients
glm.intercept<-as.numeric(coef(am.glm)[1])
glm.hp.beta<-as.numeric(coef(am.glm)[2])
glm.mpg.sq.beta<-as.numeric(coef(am.glm)[3])
glm.hp.mpg.beta<-as.numeric(coef(am.glm)[4])
#Constants
prob=0.9
c<-log(prob/(1-prob))
hp=120
polyroot(c((glm.hp.beta*hp)+glm.intercept-c, glm.hp.mpg.beta*hp,glm.mpg.sq.beta))
有没有更优雅的方案?也许 predict
函数等效?
有趣的问题!
下面的解决方案怎么样?基本上,创建 newdata
您的目标变量正在对其观察值范围进行采样。预测这些值的向量,并找到满足您条件的最小值
# Your desired threshold
prob = 0.5
# Create a sampling vector
df_new <- data.frame(
hp = rep(120, times = 100),
mpg = seq(from = range(mtcars$mpg)[1],
to = range(mtcars$mpg)[2],
length.out = 100))
# Predict on sampling vector
df_new$am <- predict(am.glm, newdata = df_new)
# Find lowest value above threshold
df_new[min(which(df_new$am > prob)), 'mpg']