FMA 性能与朴素计算的比较

FMA performance compared to naive calculation

我正在尝试比较 FMA 性能(math.h 中的 fma())与浮点计算中的朴素乘法和加法。测试很简单。我将为大迭代次数迭代相同的计算。为了精确检查,我必须完成两件事。

  1. 其他计算不应计入计算时间。
  2. 朴素的乘法和加法不应优化为 FMA
  3. 不应优化迭代。即迭代应该完全按照我的意图进行。

为了实现上述目标,我做了以下工作:

  1. 函数是内联的,只包含必需的计算。
  2. 使用 g++ -O0 选项不优化乘法。 (但是当我查看转储文件时,它似乎为两者生成了几乎相同的代码)
  3. 二手 volatile.

但结果显示几乎没有区别,甚至比简单的乘法和加法更慢 fma()是我想要的结果(即它们在速度方面并没有真正的不同)还是我做错了什么?

规格

我的代码

#include <iostream>
#include <cmath>
#include <cstdlib>
#include <chrono>
using namespace std;
using namespace chrono;

inline double rand_gen() {
    return static_cast<double>(rand()) / RAND_MAX;
}

volatile double a, b, c;
inline void pure_fma_func() {
    fma(a, b, c);
}
inline void non_fma_func() {
    a * b + c;
}


int main() {
    int n = 100000000;

    a = rand_gen();
    b = rand_gen();
    c = rand_gen();

    auto t1 = system_clock::now();
    for (int i = 0; i < n; i++) {
        non_fma_func();
    }
    auto t2 = system_clock::now();
    for (int i = 0; i < n; i++) {
        pure_fma_func();
    }
    auto t3 = system_clock::now();

    cout << "non fma" << endl;
    cout << duration_cast<microseconds>(t2 - t1).count() / 1000.0 << "ms" << endl;
    cout << "fma" << endl;
    cout << duration_cast<microseconds>(t3 - t2).count() / 1000.0 << "ms" << endl;
}

是的,你做的事情完全错了。至少有两个东西。但让我们保持简单。

Used g++ -O0 option not to optimize the multiplication

这会使您的整个结果完全不相关。有趣的事实:在任何一种情况下,函数调用的成本都可能超过计算的成本。

从根本上说,未启用优化的基准测试结果完全没有意义。您不能只是关闭它们并希望获得最好的结果。它们绝对必须启用。

其次,FMA 与常规乘加法是一个复杂的情况 - 延迟与吞吐量以及乘加法可以成为赢家的其他问题。

简而言之,你的基准测试根本不是基准测试,它只是一堆产生无意义垃圾的随机指令。

如果你想要一个准确的基准,你必须完全准确地再现实际使用环境。包括周边代码、编译器优化、整个 shebang。