通过视频检测物体位置
Detecting objects position via video
所以,我使用 openCV 基于颜色进行了对象检测,我 运行 它在 raspberry pi 3. 它正在工作,因为它实时跟踪网球(虽然它有一些延迟,因为我正在使用 kinect v1(freenect 库))。现在我想确定找到的对象所在的位置。我想知道它是在中间,还是偏左或偏右。我正在考虑将相机框架分成 3 个部分。我会有 3 个布尔值,一个用于中间,一个用于左侧,一个用于右侧,然后所有 3 个变量都将通过 USB 通信发送。然而,我已经尝试了一个星期来确定该物体的位置,但我做不到。我在这里寻求帮助。
使用 openCV 进行对象检测的当前工作代码(我按颜色检测对象)
# USAGE
# python ball_tracking.py --video ball_tracking_example.mp4
# python ball_tracking.py
# import the necessary packages
from collections import deque
import numpy as np
import argparse
import imutils
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64,
help="max buffer size")
args = vars(ap.parse_args())
# define the lower and upper boundaries of the "green"
# ball in the HSV color space, then initialize the
# list of tracked points
greenLower = (29, 86, 6)
greenUpper = (64, 255, 255)
pts = deque(maxlen=args["buffer"])
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
camera = cv2.VideoCapture(0)
# otherwise, grab a reference to the video file
else:
camera = cv2.VideoCapture(args["video"])
# keep looping
while True:
# grab the current frame
(grabbed, frame) = camera.read()
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
if args.get("video") and not grabbed:
break
# resize the frame, blur it, and convert it to the HSV
# color space
frame = imutils.resize(frame, width=600)
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
#EDIT:
if int(x) > int(200) & int(x) < int(400):
middle = True
left = False
notleft = False
if int(x) > int(1) & int(x) < int(200):
left = True
middle = False
notleft = False
if int(x) > int(400) & int(x) < int(600):
notleft = True
left = False
middle = False
print ("middle: ", middle, " left: ", left, " right: ", notleft)
# update the points queue
pts.appendleft(center)
# loop over the set of tracked points
for i in xrange(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()
代码已正确注释。使用 USB 端口发送信息不是问题,我只是找不到如何检测球在哪里。
我 运行 raspbian 我 raspberry pi。
编辑:
我忘了说,我只对根据 X 轴的对象位置感兴趣。我认为由于我将当前帧设置为 600,所以我会写 3 if 就像 if x > 200 && x < 400: bool middle = true
。你不行。
编辑2:
我想我让它以某种方式工作,但 "middle" 永远不会是真的。我对左和右正确,但对中间不正确。
如果你要检测物体在哪个位置,那么用cv2.findContours()会更好,要用cv2.HoughCircles()。由于 cv2.HoughCircles() returns 圆的中心位置 (x, y) 直接。
您可以找到使用 HoughCircles() 的示例 here
如果你得到那个圆的中心,那么确定它的位置就很容易了。
祝你好运。
if int(x) > int(200) AND int(x) < int(400):
middle = True
left = False
notleft = False
if int(x) > int(1) AND int(x) < int(200):
left = True
middle = False
notleft = False
if int(x) > int(400) AND int(x) < int(600):
notleft = True
left = False
middle = False
我只需要写 "AND" 而不是“&”...那么麻烦,这么小的修复。
这是您问题的解决方案,
# import the necessary packages
from collections import deque
import numpy as np
import argparse
import imutils
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=32,
help="max buffer size")
args = vars(ap.parse_args())
# define the lower and upper boundaries of the "green"
# ball in the HSV color space
greenLower = (29, 86, 6)
greenUpper = (64, 255, 255)
# initialize the list of tracked points, the frame counter,
# and the coordinate deltas
pts = deque(maxlen=args["buffer"])
counter = 0
(dX, dY) = (0, 0)
direction = ""
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
camera = cv2.VideoCapture(0)
# otherwise, grab a reference to the video file
else:
camera = cv2.VideoCapture(args["video"])
# keep looping
while True:
# grab the current frame
(grabbed, frame) = camera.read()
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
if args.get("video") and not grabbed:
break
# resize the frame, blur it, and convert it to the HSV
# color space
frame = imutils.resize(frame, width=600)
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
pts.appendleft(center)
# loop over the set of tracked points
for i in np.arange(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
# check to see if enough points have been accumulated in
# the buffer
if counter >= 10 and i == 1 and pts[-10] is not None:
# compute the difference between the x and y
# coordinates and re-initialize the direction
# text variables
dX = pts[-10][0] - pts[i][0]
dY = pts[-10][1] - pts[i][1]
(dirX, dirY) = ("", "")
# ensure there is significant movement in the
# x-direction
if np.abs(dX) > 20:
dirX = "East" if np.sign(dX) == 1 else "West"
# ensure there is significant movement in the
# y-direction
if np.abs(dY) > 20:
dirY = "North" if np.sign(dY) == 1 else "South"
# handle when both directions are non-empty
if dirX != "" and dirY != "":
direction = "{}-{}".format(dirY, dirX)
# otherwise, only one direction is non-empty
else:
direction = dirX if dirX != "" else dirY
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# show the movement deltas and the direction of movement on
# the frame
cv2.putText(frame, direction, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
0.65, (0, 0, 255), 3)
cv2.putText(frame, "dx: {}, dy: {}".format(dX, dY),
(10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX,
0.35, (0, 0, 255), 1)
# show the frame to our screen and increment the frame counter
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
counter += 1
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()
所以,我使用 openCV 基于颜色进行了对象检测,我 运行 它在 raspberry pi 3. 它正在工作,因为它实时跟踪网球(虽然它有一些延迟,因为我正在使用 kinect v1(freenect 库))。现在我想确定找到的对象所在的位置。我想知道它是在中间,还是偏左或偏右。我正在考虑将相机框架分成 3 个部分。我会有 3 个布尔值,一个用于中间,一个用于左侧,一个用于右侧,然后所有 3 个变量都将通过 USB 通信发送。然而,我已经尝试了一个星期来确定该物体的位置,但我做不到。我在这里寻求帮助。
使用 openCV 进行对象检测的当前工作代码(我按颜色检测对象)
# USAGE
# python ball_tracking.py --video ball_tracking_example.mp4
# python ball_tracking.py
# import the necessary packages
from collections import deque
import numpy as np
import argparse
import imutils
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64,
help="max buffer size")
args = vars(ap.parse_args())
# define the lower and upper boundaries of the "green"
# ball in the HSV color space, then initialize the
# list of tracked points
greenLower = (29, 86, 6)
greenUpper = (64, 255, 255)
pts = deque(maxlen=args["buffer"])
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
camera = cv2.VideoCapture(0)
# otherwise, grab a reference to the video file
else:
camera = cv2.VideoCapture(args["video"])
# keep looping
while True:
# grab the current frame
(grabbed, frame) = camera.read()
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
if args.get("video") and not grabbed:
break
# resize the frame, blur it, and convert it to the HSV
# color space
frame = imutils.resize(frame, width=600)
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
#EDIT:
if int(x) > int(200) & int(x) < int(400):
middle = True
left = False
notleft = False
if int(x) > int(1) & int(x) < int(200):
left = True
middle = False
notleft = False
if int(x) > int(400) & int(x) < int(600):
notleft = True
left = False
middle = False
print ("middle: ", middle, " left: ", left, " right: ", notleft)
# update the points queue
pts.appendleft(center)
# loop over the set of tracked points
for i in xrange(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()
代码已正确注释。使用 USB 端口发送信息不是问题,我只是找不到如何检测球在哪里。
我 运行 raspbian 我 raspberry pi。
编辑:
我忘了说,我只对根据 X 轴的对象位置感兴趣。我认为由于我将当前帧设置为 600,所以我会写 3 if 就像 if x > 200 && x < 400: bool middle = true
。你不行。
编辑2: 我想我让它以某种方式工作,但 "middle" 永远不会是真的。我对左和右正确,但对中间不正确。
如果你要检测物体在哪个位置,那么用cv2.findContours()会更好,要用cv2.HoughCircles()。由于 cv2.HoughCircles() returns 圆的中心位置 (x, y) 直接。
您可以找到使用 HoughCircles() 的示例 here
如果你得到那个圆的中心,那么确定它的位置就很容易了。
祝你好运。
if int(x) > int(200) AND int(x) < int(400):
middle = True
left = False
notleft = False
if int(x) > int(1) AND int(x) < int(200):
left = True
middle = False
notleft = False
if int(x) > int(400) AND int(x) < int(600):
notleft = True
left = False
middle = False
我只需要写 "AND" 而不是“&”...那么麻烦,这么小的修复。
这是您问题的解决方案,
# import the necessary packages
from collections import deque
import numpy as np
import argparse
import imutils
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=32,
help="max buffer size")
args = vars(ap.parse_args())
# define the lower and upper boundaries of the "green"
# ball in the HSV color space
greenLower = (29, 86, 6)
greenUpper = (64, 255, 255)
# initialize the list of tracked points, the frame counter,
# and the coordinate deltas
pts = deque(maxlen=args["buffer"])
counter = 0
(dX, dY) = (0, 0)
direction = ""
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
camera = cv2.VideoCapture(0)
# otherwise, grab a reference to the video file
else:
camera = cv2.VideoCapture(args["video"])
# keep looping
while True:
# grab the current frame
(grabbed, frame) = camera.read()
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
if args.get("video") and not grabbed:
break
# resize the frame, blur it, and convert it to the HSV
# color space
frame = imutils.resize(frame, width=600)
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
pts.appendleft(center)
# loop over the set of tracked points
for i in np.arange(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
# check to see if enough points have been accumulated in
# the buffer
if counter >= 10 and i == 1 and pts[-10] is not None:
# compute the difference between the x and y
# coordinates and re-initialize the direction
# text variables
dX = pts[-10][0] - pts[i][0]
dY = pts[-10][1] - pts[i][1]
(dirX, dirY) = ("", "")
# ensure there is significant movement in the
# x-direction
if np.abs(dX) > 20:
dirX = "East" if np.sign(dX) == 1 else "West"
# ensure there is significant movement in the
# y-direction
if np.abs(dY) > 20:
dirY = "North" if np.sign(dY) == 1 else "South"
# handle when both directions are non-empty
if dirX != "" and dirY != "":
direction = "{}-{}".format(dirY, dirX)
# otherwise, only one direction is non-empty
else:
direction = dirX if dirX != "" else dirY
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# show the movement deltas and the direction of movement on
# the frame
cv2.putText(frame, direction, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
0.65, (0, 0, 255), 3)
cv2.putText(frame, "dx: {}, dy: {}".format(dX, dY),
(10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX,
0.35, (0, 0, 255), 1)
# show the frame to our screen and increment the frame counter
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
counter += 1
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()