dplyr:如何按子组标准过滤组

dplyr: How to filter groups by subgroup criteria

我的问题与此类似one,但过滤条件不同

> demo(dadmom,package="tidyr")

> library(tidyr)
> library(dplyr)

> dadmom <- foreign::read.dta("http://www.ats.ucla.edu/stat/stata/modules/dadmomw.dta")

> dadmom %>%
+   gather(key, value, named:incm) %>%
+   separate(key, c("variable", "type"), -2) %>%
+   spread(variable, value, convert = TRUE)
  famid type   inc name
1     1    d 30000 Bill
2     1    m 15000 Bess
3     2    d 22000  Art
4     2    m 18000  Amy
5     3    d 25000 Paul
6     3    m 50000  Pat

使用"incm"从原来的table中很容易挑出妈妈收入>20000的家庭:

> dadmom
  famid named  incd namem  incm
1     1  Bill 30000  Bess 15000
2     2   Art 22000   Amy 18000
3     3  Paul 25000   Pat 50000

问题是:如何从 "tidied" 数据中做到这一点?

您可以在代码中添加 group_byfilter

#OP's code
d1 <- dadmom %>%
           gather(key, value, named:incm) %>%
           separate(key, c("variable", "type"), -2) %>%
           spread(variable, value, convert = TRUE)

 d1 %>% 
    group_by(famid) %>%
    filter(all(sum(type=='m' & inc > 15000)==sum(type=='m')))

#    famid type   inc name
# 1     2    d 22000  Art
# 2     2    m 18000  Amy
# 3     3    d 25000 Paul
# 4     3    m 50000  Pat

注意: 当每个 famid 有多个 'm' 时,上面的方法也有效(更通用一点)

正常情况下每个家庭只有 'm/f' 对

 d1 %>%
     group_by(famid) %>% 
     filter(any(inc >15000 & type=='m'))
 #   famid type   inc name
 #1     2    d 22000  Art
 #2     2    m 18000  Amy
 #3     3    d 25000 Paul
 #4     3    m 50000  Pat

此外,如果您希望使用开发版本中的 data.tablemelt,即 v1.9.5 可以采用多个值列。它可以从 here

安装
 library(data.table)
 melt(setDT(dadmom), measure.vars=list(c(2,4), c(3,5)), 
    variable.name='type', value.name=c('name', 'inc'))[,
    type:=c('d', 'm')[type]][, .SD[any(type=='m' & inc >15000)] ,famid]
 #    famid type name   inc
 #1:     2    d  Art 22000
 #2:     2    m  Amy 18000
 #3:     3    d Paul 25000
 #4:     3    m  Pat 50000