在hadoop map reduce上查找百分比
Finding percentage on hadoop map reduce
我正在尝试在 MapReduce 框架上分析航班数据(大约 20 GB)。
我需要找出航班延误的百分比。
如果一个航班最多提前或延迟5分钟起飞,我说的是没有晚点,否则就是晚点。
I did this calculation on map method
我确定 class IntSumReducer
的映射 method
和 reduce
方法(延误和未延误航班的总和)工作正常,但我不知道如何找到延误航班的百分比。
So I think I need to edit reduce
method of class Reduce
.
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class FlightAnalyse {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text delayOrNot = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String[] columns = value.toString().split(",");
if(columns.length > 5){
int actualDepTime = 0;
int scheduledDepTime = 0;
try{
actualDepTime = (int) Double.parseDouble(columns[4]);
scheduledDepTime = (int) Double.parseDouble(columns[5]);
}
catch(NumberFormatException nfe){
return;
}
//convert time to minutes
actualDepTime = ((int) actualDepTime/100) * 60 + actualDepTime%100;
scheduledDepTime = ((int) scheduledDepTime/100) * 60 + scheduledDepTime%100;
int diff = actualDepTime - scheduledDepTime;
//if the differecen is less than 5 minutes
if(diff <= 5 && diff >= -5)
delayOrNot.set("NotDelay");
else
delayOrNot.set("Delay");
context.write(delayOrNot, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static class Reduce
extends Reducer<Text,IntWritable,Text,FloatWritable> {
private FloatWritable result = new FloatWritable();
Float persentage = 0f;
Float numOfonTime = 0f;
Float count = 0f;
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
for (IntWritable val : values) {
count += val.get();
if(key.toString() == "NotDelay")
numOfonTime += val.get();
}
persentage = numOfonTime/count;
result.set(persentage);
Text sumText = new Text("persentage: ");
context.write(sumText, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Flight Analysis");
job.setJarByClass(FlightAnalyse.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
错误是没有使用 equals 方法,这很简单。
我不会关闭这个问题,因为稍后代码可能对某人有用。
正确的代码如下,略有改动:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class FlightAnalyse {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text delayOrNot = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String[] columns = value.toString().split(",");
if(columns.length > 15){
int delay = 0;
try{
delay = (int) Double.parseDouble(columns[15]); //delay in minutes
}
catch(NumberFormatException nfe){
return;
}
//if the differecen is less than 5 minutes
if(delay <= 5 && delay >= -5)
delayOrNot.set("NotDelay");
else
delayOrNot.set("Delay");
context.write(delayOrNot, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static class Reduce
extends Reducer<Text,IntWritable,Text,FloatWritable> {
private FloatWritable result = new FloatWritable();
Float persentage = 0f;
Float numOfonTime = 0f;
Float count = 0f;
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
for (IntWritable val : values) {
count += val.get();
if(key.toString().equals("NotDelay"))
numOfonTime += val.get();
}
persentage = numOfonTime/count;
result.set(persentage);
Text sumText = new Text("persentage of " + key + ": ");
context.write(sumText, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Flight Analysis");
job.setJarByClass(FlightAnalyse.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
我正在尝试在 MapReduce 框架上分析航班数据(大约 20 GB)。
我需要找出航班延误的百分比。
如果一个航班最多提前或延迟5分钟起飞,我说的是没有晚点,否则就是晚点。
I did this calculation on map method
我确定 class IntSumReducer
的映射 method
和 reduce
方法(延误和未延误航班的总和)工作正常,但我不知道如何找到延误航班的百分比。
So I think I need to edit
reduce
method ofclass Reduce
.
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class FlightAnalyse {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text delayOrNot = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String[] columns = value.toString().split(",");
if(columns.length > 5){
int actualDepTime = 0;
int scheduledDepTime = 0;
try{
actualDepTime = (int) Double.parseDouble(columns[4]);
scheduledDepTime = (int) Double.parseDouble(columns[5]);
}
catch(NumberFormatException nfe){
return;
}
//convert time to minutes
actualDepTime = ((int) actualDepTime/100) * 60 + actualDepTime%100;
scheduledDepTime = ((int) scheduledDepTime/100) * 60 + scheduledDepTime%100;
int diff = actualDepTime - scheduledDepTime;
//if the differecen is less than 5 minutes
if(diff <= 5 && diff >= -5)
delayOrNot.set("NotDelay");
else
delayOrNot.set("Delay");
context.write(delayOrNot, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static class Reduce
extends Reducer<Text,IntWritable,Text,FloatWritable> {
private FloatWritable result = new FloatWritable();
Float persentage = 0f;
Float numOfonTime = 0f;
Float count = 0f;
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
for (IntWritable val : values) {
count += val.get();
if(key.toString() == "NotDelay")
numOfonTime += val.get();
}
persentage = numOfonTime/count;
result.set(persentage);
Text sumText = new Text("persentage: ");
context.write(sumText, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Flight Analysis");
job.setJarByClass(FlightAnalyse.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
错误是没有使用 equals 方法,这很简单。 我不会关闭这个问题,因为稍后代码可能对某人有用。
正确的代码如下,略有改动:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class FlightAnalyse {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text delayOrNot = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String[] columns = value.toString().split(",");
if(columns.length > 15){
int delay = 0;
try{
delay = (int) Double.parseDouble(columns[15]); //delay in minutes
}
catch(NumberFormatException nfe){
return;
}
//if the differecen is less than 5 minutes
if(delay <= 5 && delay >= -5)
delayOrNot.set("NotDelay");
else
delayOrNot.set("Delay");
context.write(delayOrNot, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static class Reduce
extends Reducer<Text,IntWritable,Text,FloatWritable> {
private FloatWritable result = new FloatWritable();
Float persentage = 0f;
Float numOfonTime = 0f;
Float count = 0f;
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
for (IntWritable val : values) {
count += val.get();
if(key.toString().equals("NotDelay"))
numOfonTime += val.get();
}
persentage = numOfonTime/count;
result.set(persentage);
Text sumText = new Text("persentage of " + key + ": ");
context.write(sumText, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Flight Analysis");
job.setJarByClass(FlightAnalyse.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}