如何修改矩阵乘法以仅求和 R 中的正值或负值
How to modify matrix multiplication to sum only positives or negatives values in R
我想做一个扭曲的矩阵乘法。
我有这个矩阵:
A <- matrix(c(1,-1,-1,0,-1,0,1,0,0,1,0,0,0,1,-1,1,-1,0,0,-1,1,0,1,0,1,-1,-1,1,-1,1), nrow = 6, ncol = 5)
A
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 0 0 1
[2,] -1 0 1 -1 -1
[3,] -1 0 -1 1 -1
[4,] 0 1 1 0 1
[5,] -1 0 -1 1 -1
[6,] 0 0 0 0 1
我想得到两个不同的矩阵。第一个矩阵是这样的:
C
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 2 0 1
[2,] 0 0 2 1 2 0
[3,] 0 2 0 0 4 0
[4,] 2 1 0 0 0 1
[5,] 0 2 4 0 0 0
[6,] 1 0 0 1 0 0
这个 "convergence matrix" 有点像 A 的转置乘法(在 R 中是这样 A%*%t(A)
),但有一点扭曲,在获得每个单元格的求和过程中我只想要正值的总和。例如,对于单元格 C23,常规总和为:
(-1)(-1) + (0)(0) + (1)(-1) + (-1)(1) + (-1)(-1) = 0
,但我只想要正积的总和,在这个例子中第一个 [(-1)(-1)] 和最后一个 [(-1)(-1)] 得到 2.
第二个矩阵是这样的:
D
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 2 2 0 2 0
[2,] 2 0 2 1 2 1
[3,] 2 2 0 2 0 1
[4,] 0 1 2 0 2 0
[5,] 2 2 0 2 0 1
[6,] 0 1 1 0 1 0
这个"divergence matrix"和上一个类似,不同的是我只想对负值的绝对值求和。例如,对于单元格 D23,常规总和为:
(-1)(-1) + (0)(0) + (1)(-1) + (-1)(1) + (-1)(-1) = 0
,但我只想要负积的绝对值之和,在这个例子中第三个abs [(1)(-1)]和第四个abs[(-1)(-1)]到获得2.
我一直在尝试应用、扫描和循环,但我做不到。
感谢您的回复。
它的效率会显着降低,但您可以将矩阵分解为行向量列表,这样更容易计算。使用 purrr
,这对列表很方便,
library(purrr)
A <- matrix(c(1,-1,-1,0,-1,0,1,0,0,1,0,0,0,1,-1,1,-1,0,0,-1,1,0,1,0,1,-1,-1,1,-1,1),
nrow = 6, ncol = 5)
C <- seq(nrow(A)) %>% # generate a sequence of row indices
map(~A[.x, ]) %>% # subset matrix into a list of rows
cross2(., .) %>% # do a Cartesian join to get pairs of rows
# calculate products, then subset before summing. Simplify to vector
map_dbl(~{ij <- .x[[1]] * .x[[2]]; sum(ij[ij >= 0])}) %>%
matrix(nrow(A)) # reassemble to matrix
C
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 3 0 0 2 0 1
#> [2,] 0 4 2 1 2 0
#> [3,] 0 2 4 0 4 0
#> [4,] 2 1 0 3 0 1
#> [5,] 0 2 4 0 4 0
#> [6,] 1 0 0 1 0 1
# same except subsetting and `-` to make negatives positive
D <- seq(nrow(A)) %>%
map(~A[.x, ]) %>%
cross2(., .) %>%
map_dbl(~{ij <- .x[[1]] * .x[[2]]; sum(-ij[ij <= 0])}) %>%
matrix(nrow(A))
D
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0 2 2 0 2 0
#> [2,] 2 0 2 1 2 1
#> [3,] 2 2 0 2 0 1
#> [4,] 0 1 2 0 2 0
#> [5,] 2 2 0 2 0 1
#> [6,] 0 1 1 0 1 0
这是在 base R 中的一次尝试。所以基本上您遵循矩阵叉积方法,但您尝试手动管理 sum
步骤:
f <- function(A, convergence=TRUE){
sapply(seq_len(nrow(A)), function(i) {
r <- t(matrix(A[i,],ncol(A),nrow(A)))*A
if(convergence)
r[r<0] <- 0
else
r[r>0] <- 0
rowSums(abs(r))
})
}
> f(A, convergence = TRUE)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3 0 0 2 0 1
[2,] 0 4 2 1 2 0
[3,] 0 2 4 0 4 0
[4,] 2 1 0 3 0 1
[5,] 0 2 4 0 4 0
[6,] 1 0 0 1 0 1
> f(A, convergence = FALSE)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 2 2 0 2 0
[2,] 2 0 2 1 2 1
[3,] 2 2 0 2 0 1
[4,] 0 1 2 0 2 0
[5,] 2 2 0 2 0 1
[6,] 0 1 1 0 1 0
再拍一张:
D <- A
D[D<0] = -1i*D[D<0]
D <- Im(tcrossprod(D))
C <- tcrossprod(A) + D
A
在问题中定义。
输出:
> D
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 2 2 0 2 0
[2,] 2 0 2 1 2 1
[3,] 2 2 0 2 0 1
[4,] 0 1 2 0 2 0
[5,] 2 2 0 2 0 1
[6,] 0 1 1 0 1 0
> C
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3 0 0 2 0 1
[2,] 0 4 2 1 2 0
[3,] 0 2 4 0 4 0
[4,] 2 1 0 3 0 1
[5,] 0 2 4 0 4 0
[6,] 1 0 0 1 0 1
我想做一个扭曲的矩阵乘法。
我有这个矩阵:
A <- matrix(c(1,-1,-1,0,-1,0,1,0,0,1,0,0,0,1,-1,1,-1,0,0,-1,1,0,1,0,1,-1,-1,1,-1,1), nrow = 6, ncol = 5)
A
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 0 0 1
[2,] -1 0 1 -1 -1
[3,] -1 0 -1 1 -1
[4,] 0 1 1 0 1
[5,] -1 0 -1 1 -1
[6,] 0 0 0 0 1
我想得到两个不同的矩阵。第一个矩阵是这样的:
C
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 2 0 1
[2,] 0 0 2 1 2 0
[3,] 0 2 0 0 4 0
[4,] 2 1 0 0 0 1
[5,] 0 2 4 0 0 0
[6,] 1 0 0 1 0 0
这个 "convergence matrix" 有点像 A 的转置乘法(在 R 中是这样 A%*%t(A)
),但有一点扭曲,在获得每个单元格的求和过程中我只想要正值的总和。例如,对于单元格 C23,常规总和为:
(-1)(-1) + (0)(0) + (1)(-1) + (-1)(1) + (-1)(-1) = 0
,但我只想要正积的总和,在这个例子中第一个 [(-1)(-1)] 和最后一个 [(-1)(-1)] 得到 2.
第二个矩阵是这样的:
D
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 2 2 0 2 0
[2,] 2 0 2 1 2 1
[3,] 2 2 0 2 0 1
[4,] 0 1 2 0 2 0
[5,] 2 2 0 2 0 1
[6,] 0 1 1 0 1 0
这个"divergence matrix"和上一个类似,不同的是我只想对负值的绝对值求和。例如,对于单元格 D23,常规总和为:
(-1)(-1) + (0)(0) + (1)(-1) + (-1)(1) + (-1)(-1) = 0
,但我只想要负积的绝对值之和,在这个例子中第三个abs [(1)(-1)]和第四个abs[(-1)(-1)]到获得2.
我一直在尝试应用、扫描和循环,但我做不到。 感谢您的回复。
它的效率会显着降低,但您可以将矩阵分解为行向量列表,这样更容易计算。使用 purrr
,这对列表很方便,
library(purrr)
A <- matrix(c(1,-1,-1,0,-1,0,1,0,0,1,0,0,0,1,-1,1,-1,0,0,-1,1,0,1,0,1,-1,-1,1,-1,1),
nrow = 6, ncol = 5)
C <- seq(nrow(A)) %>% # generate a sequence of row indices
map(~A[.x, ]) %>% # subset matrix into a list of rows
cross2(., .) %>% # do a Cartesian join to get pairs of rows
# calculate products, then subset before summing. Simplify to vector
map_dbl(~{ij <- .x[[1]] * .x[[2]]; sum(ij[ij >= 0])}) %>%
matrix(nrow(A)) # reassemble to matrix
C
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 3 0 0 2 0 1
#> [2,] 0 4 2 1 2 0
#> [3,] 0 2 4 0 4 0
#> [4,] 2 1 0 3 0 1
#> [5,] 0 2 4 0 4 0
#> [6,] 1 0 0 1 0 1
# same except subsetting and `-` to make negatives positive
D <- seq(nrow(A)) %>%
map(~A[.x, ]) %>%
cross2(., .) %>%
map_dbl(~{ij <- .x[[1]] * .x[[2]]; sum(-ij[ij <= 0])}) %>%
matrix(nrow(A))
D
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0 2 2 0 2 0
#> [2,] 2 0 2 1 2 1
#> [3,] 2 2 0 2 0 1
#> [4,] 0 1 2 0 2 0
#> [5,] 2 2 0 2 0 1
#> [6,] 0 1 1 0 1 0
这是在 base R 中的一次尝试。所以基本上您遵循矩阵叉积方法,但您尝试手动管理 sum
步骤:
f <- function(A, convergence=TRUE){
sapply(seq_len(nrow(A)), function(i) {
r <- t(matrix(A[i,],ncol(A),nrow(A)))*A
if(convergence)
r[r<0] <- 0
else
r[r>0] <- 0
rowSums(abs(r))
})
}
> f(A, convergence = TRUE)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3 0 0 2 0 1
[2,] 0 4 2 1 2 0
[3,] 0 2 4 0 4 0
[4,] 2 1 0 3 0 1
[5,] 0 2 4 0 4 0
[6,] 1 0 0 1 0 1
> f(A, convergence = FALSE)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 2 2 0 2 0
[2,] 2 0 2 1 2 1
[3,] 2 2 0 2 0 1
[4,] 0 1 2 0 2 0
[5,] 2 2 0 2 0 1
[6,] 0 1 1 0 1 0
再拍一张:
D <- A
D[D<0] = -1i*D[D<0]
D <- Im(tcrossprod(D))
C <- tcrossprod(A) + D
A
在问题中定义。
输出:
> D
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 2 2 0 2 0
[2,] 2 0 2 1 2 1
[3,] 2 2 0 2 0 1
[4,] 0 1 2 0 2 0
[5,] 2 2 0 2 0 1
[6,] 0 1 1 0 1 0
> C
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3 0 0 2 0 1
[2,] 0 4 2 1 2 0
[3,] 0 2 4 0 4 0
[4,] 2 1 0 3 0 1
[5,] 0 2 4 0 4 0
[6,] 1 0 0 1 0 1