matplotlib 中的自定义对数轴缩放
Custom logarithmic axis scaling in matplotlib
我正在尝试使用 math.log(1+x) 而不是通常的 'log' 缩放选项来缩放绘图的 x 轴,并且我查看了一些自定义缩放示例,但我无法让我的工作!这是我的 MWE:
import matplotlib.pyplot as plt
import numpy as np
import math
from matplotlib.ticker import FormatStrFormatter
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
class CustomScale(mscale.ScaleBase):
name = 'custom'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.thresh = None #thresh
def get_transform(self):
return self.CustomTransform(self.thresh)
def set_default_locators_and_formatters(self, axis):
pass
class CustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform_non_affine(self, a):
return math.log(1+a)
def inverted(self):
return CustomScale.InvertedCustomTransform(self.thresh)
class InvertedCustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform_non_affine(self, a):
return math.log(1+a)
def inverted(self):
return CustomScale.CustomTransform(self.thresh)
# Now that the Scale class has been defined, it must be registered so
# that ``matplotlib`` can find it.
mscale.register_scale(CustomScale)
z = [0,0.1,0.3,0.9,1,2,5]
thick = [20,40,20,60,37,32,21]
fig = plt.figure(figsize=(8,5))
ax1 = fig.add_subplot(111)
ax1.plot(z, thick, marker='o', linewidth=2, c='k')
plt.xlabel(r'$\rm{redshift}$', size=16)
plt.ylabel(r'$\rm{thickness\ (kpc)}$', size=16)
plt.gca().set_xscale('custom')
plt.show()
scale由两个Transformclasses组成,每一个都需要提供一个transform_non_affine
方法。一个 class 需要从数据坐标转换为显示坐标,即 log(a+1)
,另一个是相反的,需要从显示坐标转换为数据坐标,在本例中为 exp(a)-1
.
这些方法需要处理 numpy 数组,因此它们应该使用各自的 numpy 函数而不是 math 包中的函数。
class CustomTransform(mtransforms.Transform):
....
def transform_non_affine(self, a):
return np.log(1+a)
class InvertedCustomTransform(mtransforms.Transform):
....
def transform_non_affine(self, a):
return np.exp(a)-1
即使@ImportanceOfBeingErnest 的答案有效,也无需自己定义 类。
您可以使用 FunctionScale
或 FunctionScaleLog
在 一行 中执行此操作。以FunctionScaleLog
为例:
plt.gca().set_xscale("functionlog", functions=[lambda x: x + 1, lambda x: x - 1])
以及您的完整代码:
import matplotlib.pyplot as plt
import numpy as np
z = [0, 0.1, 0.3, 0.9, 1, 2, 5]
thick = [20, 40, 20, 60, 37, 32, 21]
fig = plt.figure(figsize=(8, 5))
ax1 = fig.add_subplot(111)
ax1.plot(z, thick, marker="o", linewidth=2, c="k")
plt.xlabel(r"$\rm{redshift}$", size=16)
plt.ylabel(r"$\rm{thickness\ (kpc)}$", size=16)
# Below is my code
plt.gca().set_xscale("functionlog", functions=[lambda x: x + 1, lambda x: x - 1])
plt.gca().set_xticks(np.arange(0, 6))
plt.gca().set_xticklabels(np.arange(0, 6))
结果是:
我正在尝试使用 math.log(1+x) 而不是通常的 'log' 缩放选项来缩放绘图的 x 轴,并且我查看了一些自定义缩放示例,但我无法让我的工作!这是我的 MWE:
import matplotlib.pyplot as plt
import numpy as np
import math
from matplotlib.ticker import FormatStrFormatter
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
class CustomScale(mscale.ScaleBase):
name = 'custom'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.thresh = None #thresh
def get_transform(self):
return self.CustomTransform(self.thresh)
def set_default_locators_and_formatters(self, axis):
pass
class CustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform_non_affine(self, a):
return math.log(1+a)
def inverted(self):
return CustomScale.InvertedCustomTransform(self.thresh)
class InvertedCustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform_non_affine(self, a):
return math.log(1+a)
def inverted(self):
return CustomScale.CustomTransform(self.thresh)
# Now that the Scale class has been defined, it must be registered so
# that ``matplotlib`` can find it.
mscale.register_scale(CustomScale)
z = [0,0.1,0.3,0.9,1,2,5]
thick = [20,40,20,60,37,32,21]
fig = plt.figure(figsize=(8,5))
ax1 = fig.add_subplot(111)
ax1.plot(z, thick, marker='o', linewidth=2, c='k')
plt.xlabel(r'$\rm{redshift}$', size=16)
plt.ylabel(r'$\rm{thickness\ (kpc)}$', size=16)
plt.gca().set_xscale('custom')
plt.show()
scale由两个Transformclasses组成,每一个都需要提供一个transform_non_affine
方法。一个 class 需要从数据坐标转换为显示坐标,即 log(a+1)
,另一个是相反的,需要从显示坐标转换为数据坐标,在本例中为 exp(a)-1
.
这些方法需要处理 numpy 数组,因此它们应该使用各自的 numpy 函数而不是 math 包中的函数。
class CustomTransform(mtransforms.Transform):
....
def transform_non_affine(self, a):
return np.log(1+a)
class InvertedCustomTransform(mtransforms.Transform):
....
def transform_non_affine(self, a):
return np.exp(a)-1
即使@ImportanceOfBeingErnest 的答案有效,也无需自己定义 类。
您可以使用 FunctionScale
或 FunctionScaleLog
在 一行 中执行此操作。以FunctionScaleLog
为例:
plt.gca().set_xscale("functionlog", functions=[lambda x: x + 1, lambda x: x - 1])
以及您的完整代码:
import matplotlib.pyplot as plt
import numpy as np
z = [0, 0.1, 0.3, 0.9, 1, 2, 5]
thick = [20, 40, 20, 60, 37, 32, 21]
fig = plt.figure(figsize=(8, 5))
ax1 = fig.add_subplot(111)
ax1.plot(z, thick, marker="o", linewidth=2, c="k")
plt.xlabel(r"$\rm{redshift}$", size=16)
plt.ylabel(r"$\rm{thickness\ (kpc)}$", size=16)
# Below is my code
plt.gca().set_xscale("functionlog", functions=[lambda x: x + 1, lambda x: x - 1])
plt.gca().set_xticks(np.arange(0, 6))
plt.gca().set_xticklabels(np.arange(0, 6))
结果是: