如何通过比较值范围来合并两个 pandas 数据帧(或传输值)

How to merge two pandas dataframes (or transfer values) by comparing ranges of values

在以下数据中:

data01 =

contig  start    end    haplotype_block 
2   5207    5867    1856
2   155667    155670    2816
2   67910    68022  2
2   68464    68483  3
2   525    775  132
2   118938    119559    1157

data02 =

contig    start   last    feature gene_id gene_name   transcript_id
2   5262    5496    exon    scaffold_200003.1   CP5 scaffold_200003.1
2   5579    5750    exon    scaffold_200003.1   CP5 scaffold_200003.1
2   5856    6032    exon    scaffold_200003.1   CP5 scaffold_200003.1
2   6115    6198    exon    scaffold_200003.1   CP5 scaffold_200003.1
2   916 1201    exon    scaffold_200001.1   NA  scaffold_200001.1
2   614 789 exon    scaffold_200001.1   NA  scaffold_200001.1
2   171 435 exon    scaffold_200001.1   NA  scaffold_200001.1
2   2677    2806    exon    scaffold_200002.1   NA  scaffold_200002.1
2   2899    3125    exon    scaffold_200002.1   NA  scaffold_200002.1

问题:

我试过了(使用pandas):

data01['gene_id'] = ""
data01['gene_name'] = ""

data01['gene_id'] = data01['gene_id'].\
apply(lambda x: data02['gene_id']\
        if range(data01['start'], data01['end'])\
           <= range(data02['start'], data02['last']) else 'NA')

我该如何改进这段代码?我目前坚持 pandas,但如果使用字典可以更好地解决问题,我愿意接受。但是,请解释一下过程,我愿意学习而不只是得到答案。

谢谢,

期望输出:

contig  start    end    haplotype_block    gene_id    gene_name
2   5207    5867    1856    scaffold_200003.1,scaffold_200003.1,scaffold_200003.1   CP5,CP5,CP5

# the gene_id and gene_name are repeated 3 times because three intervals (i.e 5262-5496, 5579-5750, 5856-6032) from data02 overlap(or touch) the interval ranges from data01 (5207-5867)

# So, whenever there is overlap of the ranges between two dataframe, copy the gene_id and gene_name.

# and simply NA on gene_id and gene_name for non overlapping ranges

2   155667    155670    2816    NA    NA
2   67910    68022  2    NA    NA
2   68464    68483  3    NA    NA
2   525    775  132    scaffold_200001.1   NA
2   118938    119559    1157    NA    NA

我知道您正在使用 python,但使用经典的生物信息学工具可以轻松解决您的问题 bedtools intersecthttp://bedtools.readthedocs.io/en/latest/content/tools/intersect.html

您的两个输入文件都遵循标准 BED 格式:http://bedtools.readthedocs.io/en/latest/content/general-usage.html

Bedtools intersect 为您提供了有关如何确定什么构成两个区域之间的交集或重叠的高级逻辑。我相信它也可以直接对 bgzipped 输入进行操作。

你应该在 python 中使用区间树函数,它们非常高效且内存友好,我尝试了类似的东西 运行 它来解决一些后来解决的问题,但这是我写的代码, Using Interval tree to find overlapping regions

您可以在此代码的基础上进行构建。

s1 = data01.start.values
e1 = data01.end.values
s2 = data02.start.values
e2 = data02['last'].values

overlap = (
    (s1[:, None] <= s2) & (e1[:, None] >= s2)
) | (
    (s1[:, None] <= e2) & (e1[:, None] >= e2)
)

g = data02.gene_id.values
n = data02.gene_name.values

i, j = np.where(overlap)
idx_map = {i_: data01.index[i_] for i_ in pd.unique(i)}

def make_series(m):
    s = pd.Series(m[j]).fillna('').groupby(i).agg(','.join)
    return s.rename_axis(idx_map).replace('', np.nan)

data01.assign(
    gene_id=make_series(g),
    gene_name=make_series(n),
)

如果你想要比 bedtools 快得多的东西 and/or Python 科学堆栈的本地居民,试试 pyranges:

import pyranges as pr

c1 = """Chromosome  Start    End    haplotype_block
2   5207    5867    1856
2   155667    155670    2816
2   67910    68022  2
2   68464    68483  3
2   525    775  132
2   118938    119559    1157"""

c2 = """Chromosome Start End  feature gene_id gene_name   transcript_id
2   5262    5496    exon    scaffold_200003.1   CP5 scaffold_200003.1
2   5579    5750    exon    scaffold_200003.1   CP5 scaffold_200003.1
2   5856    6032    exon    scaffold_200003.1   CP5 scaffold_200003.1
2   6115    6198    exon    scaffold_200003.1   CP5 scaffold_200003.1
2   916 1201    exon    scaffold_200001.1   NA  scaffold_200001.1
2   614 789 exon    scaffold_200001.1   NA  scaffold_200001.1
2   171 435 exon    scaffold_200001.1   NA  scaffold_200001.1
2   2677    2806    exon    scaffold_200002.1   NA  scaffold_200002.1
2   2899    3125    exon    scaffold_200002.1   NA  scaffold_200002.1"""

gr1, gr2 = pr.from_string(c1), pr.from_string(c2)

j = gr1.join(gr2).sort()

print(j)
# +--------------+-----------+-----------+-------------------+-----------+-----------+------------+-------------------+-------------+-------------------+
# |   Chromosome |     Start |       End |   haplotype_block |   Start_b |     End_b | feature    | gene_id           | gene_name   | transcript_id     |
# |   (category) |   (int32) |   (int32) |           (int64) |   (int32) |   (int32) | (object)   | (object)          | (object)    | (object)          |
# |--------------+-----------+-----------+-------------------+-----------+-----------+------------+-------------------+-------------+-------------------|
# |            2 |       525 |       775 |               132 |       614 |       789 | exon       | scaffold_200001.1 | nan         | scaffold_200001.1 |
# |            2 |      5207 |      5867 |              1856 |      5262 |      5496 | exon       | scaffold_200003.1 | CP5         | scaffold_200003.1 |
# |            2 |      5207 |      5867 |              1856 |      5579 |      5750 | exon       | scaffold_200003.1 | CP5         | scaffold_200003.1 |
# |            2 |      5207 |      5867 |              1856 |      5856 |      6032 | exon       | scaffold_200003.1 | CP5         | scaffold_200003.1 |
# +--------------+-----------+-----------+-------------------+-----------+-----------+------------+-------------------+-------------+-------------------+
# Unstranded PyRanges object has 4 rows and 10 columns from 1 chromosomes.
# For printing, the PyRanges was sorted on Chromosome.

print(j.df)
#   Chromosome  Start   End  haplotype_block  Start_b  End_b feature            gene_id gene_name      transcript_id
# 0          2    525   775              132      614    789    exon  scaffold_200001.1       NaN  scaffold_200001.1
# 1          2   5207  5867             1856     5262   5496    exon  scaffold_200003.1       CP5  scaffold_200003.1
# 2          2   5207  5867             1856     5579   5750    exon  scaffold_200003.1       CP5  scaffold_200003.1
# 3          2   5207  5867             1856     5856   6032    exon  scaffold_200003.1       CP5  scaffold_200003.1