处理可变列数数据框 - Python
Handling Variable Number of Columns Dataframe - Python
我正在尝试使用 pandas 将列表列表写入 excel sheet
该列表如下所示:
List_of Lists = [ [1,2,3,4],
[5,6,7,8],
[9,10,11,12],
........,
]
The number of these lists inside the main list could go up to a 1000.
I also want to label them like colums1, colomns2, until colums100 for
instance. on the same sheets. can anyone familiar with pandas help me?
as this could be really easy for some?
我相信您可以将列表传递给 pd.DataFrame()
,对于不存在的值,您只会得到 NaN。
例如:
List_of_Lists = [[1,2,3,4],
[5,6,7],
[9,10],
[11]]
df = pd.DataFrame(List_of_Lists)
print(df)
0 1 2 3
0 1 2.0 3.0 4.0
1 5 6.0 7.0 NaN
2 9 10.0 NaN NaN
3 11 NaN NaN NaN
然后按照您想要的方式命名,只需使用 pandas.DataFrame.add_prefix
df = df.add_prefix('Column')
print(df)
Column0 Column1 Column2 Column3
0 1 2.0 3.0 4.0
1 5 6.0 7.0 NaN
2 9 10.0 NaN NaN
3 11 NaN NaN NaN
现在我想您可能还希望每个列表都是一列。在这种情况下,您需要转置 List_of_Lists
.
from itertools import zip_longest
df = pd.DataFrame(list(map(list, zip_longest(*List_of_Lists))))
print(df)
0 1 2 3
0 1 5.0 9.0 11.0
1 2 6.0 10.0 NaN
2 3 7.0 NaN NaN
3 4 NaN NaN NaN
我正在尝试使用 pandas 将列表列表写入 excel sheet 该列表如下所示:
List_of Lists = [ [1,2,3,4],
[5,6,7,8],
[9,10,11,12],
........,
]
The number of these lists inside the main list could go up to a 1000. I also want to label them like colums1, colomns2, until colums100 for instance. on the same sheets. can anyone familiar with pandas help me? as this could be really easy for some?
我相信您可以将列表传递给 pd.DataFrame()
,对于不存在的值,您只会得到 NaN。
例如:
List_of_Lists = [[1,2,3,4],
[5,6,7],
[9,10],
[11]]
df = pd.DataFrame(List_of_Lists)
print(df)
0 1 2 3
0 1 2.0 3.0 4.0
1 5 6.0 7.0 NaN
2 9 10.0 NaN NaN
3 11 NaN NaN NaN
然后按照您想要的方式命名,只需使用 pandas.DataFrame.add_prefix
df = df.add_prefix('Column')
print(df)
Column0 Column1 Column2 Column3
0 1 2.0 3.0 4.0
1 5 6.0 7.0 NaN
2 9 10.0 NaN NaN
3 11 NaN NaN NaN
现在我想您可能还希望每个列表都是一列。在这种情况下,您需要转置 List_of_Lists
.
from itertools import zip_longest
df = pd.DataFrame(list(map(list, zip_longest(*List_of_Lists))))
print(df)
0 1 2 3
0 1 5.0 9.0 11.0
1 2 6.0 10.0 NaN
2 3 7.0 NaN NaN
3 4 NaN NaN NaN