pymc3 多分类贝叶斯网络——如何采样?

pymc3 Multi-category Bayesian network - how to sample?

我已经建立了一个贝叶斯网络,每个节点有 3 个状态,如下所示,并且可以从中读取特定状态的 logp(如代码中所示)。

接下来我想从中取样。在下面的代码中,采样运行但我没有看到输出中三个状态的分布;相反,我看到的是均值和方差,就好像它们是连续的节点一样。如何获得三个状态的后验值?

将 numpy 导入为 np 将 pymc3 导入为 mc 导入 pylab,数学

模型=mc.Model() 型号:

rain = mc.Categorical('rain', p = np.array([0.5, 0. ,0.5]))

sprinkler = mc.Categorical('sprinkler', p=np.array([0.33,0.33,0.34]))

CPT = mc.math.constant(np.array([ [ [.1,.2,.7], [.2,.2,.6], [.3,.3,.4] ],\
                                  [ [.8,.1,.1], [.3,.4,.3], [.1,.1,.8] ],\
                                  [ [.6,.2,.2], [.4,.4,.2], [.2,.2,.6] ] ]))

p_wetgrass = CPT[rain, sprinkler]
wetgrass = mc.Categorical('wetgrass', p_wetgrass)

#brute force search (not working)
for val_rain in range(0,3):
    for val_sprinkler in range(0,3):
        for val_wetgrass in range(0,3):
            lik = model.logp(rain=val_rain, sprinkler=val_sprinkler, wetgrass=val_wetgrass )
            print([val_rain, val_sprinkler, val_wetgrass, lik])

#sampling (runs but don't understand output)
if 1:
    niter = 10000  # 10000
    tune = 5000  # 5000
    print("SAMPLING:")
    #trace = mc.sample(20000, step=[mc.BinaryGibbsMetropolis([rain, sprinkler])], tune=tune, random_seed=124)
    trace = mc.sample(20000, tune=tune, random_seed=124)

    print("trace summary")
    mc.summary(trace)

回答自己的问题:轨迹确实包含离散值,但 mc.summary(trace) 函数设置为计算连续的均值和方差统计数据。要制作离散状态的直方图,请使用 h = hist(trace.get_values(sprinkler)) :-)