使用 R 中的多个组合按组计算均值和 nmiss,data.table

Compute mean and nmiss by group with multiple combinations in R, data.table

我想计算具有大型数据集的几个组组合的 NA 的平均值和计数。这可能最容易用一些测试数据来解释。我在 Macbook Pro 上使用最新版本的 R 和 data.table 包(数据很大,>1M 行)。 (注意:我在发布这篇文章后注意到我不小心对下面的 "m = " 变量使用了 sum() 而不是 mean() 。我没有编辑它,因为我不想重新 运行一切,不要认为它那么重要)

set.seed(4)
YR = data.table(yr=1962:2015)
ID = data.table(id=10001:11000)
ID2 = data.table(id2 = 20001:20050)
DT <- YR[,as.list(ID), by = yr] # intentional cartesian join
DT <- DT[,as.list(ID2), by = .(yr, id)] # intentional cartesian join
rm("YR","ID","ID2")
# 2.7M obs, now add data
DT[,`:=` (ratio = rep(sample(10),each=27000)+rnorm(nrow(DT)))]
DT <- DT[round(ratio %% 5) == 0, ratio:=NA] # make some of the ratios NA
DT[,`:=` (keep = as.integer(rnorm(nrow(DT)) > 0.7)) ] # add in the indicator variable
# do it again
DT[,`:=` (ratio2 = rep(sample(10),each=27000)+rnorm(nrow(DT)))]
DT <- DT[round(ratio2 %% 4) == 0, ratio2:=NA] # make some of the ratios NA
DT[,`:=` (keep2 = as.integer(rnorm(nrow(DT)) > 0.7)) ] # add in the indicator variable

所以,我有的是识别信息(yr,id,id2)和我想总结的数据:keep1|2,ratio1|2。特别是通过 yr-id,我想使用 keep 和 keep2(从而压缩 id2)来计算平均比率和比率 2。我考虑过通过 keep/keep2 计算比率和比率 2 进行子集化,或者通过 keep*ratio、keep2*ratio、keep*ratio2 和 keep2*ratio2 的矩阵乘法来实现。

首先,我这样做的方式得到了正确的答案,但速度很慢:

system.time(test1 <- DT[,.SD[keep == 1,.(m = sum(ratio,na.rm = TRUE), 
                                nmiss = sum(is.na(ratio)) )
                      ],by=.(yr,id)])
   user  system elapsed 
 23.083   0.191  23.319 

这在大约相同的时间内同样有效。我认为首先对主要数据进行子集化而不是在 .SD 中进行子集化可能会更快:

system.time(test2 <- DT[keep == 1,.SD[,.(m = sum(ratio,na.rm = TRUE), 
                                nmiss = sum(is.na(ratio)) )
                       ],by=.(yr,id)])
   user  system elapsed 
 23.723   0.208  23.963

这两种方法的问题是我需要对每个 keep 变量进行单独的计算。因此我尝试了这种方式:

system.time(test3 <- DT[,.SD[,.( m = sum(ratio*keep,na.rm = TRUE),
                                 nmiss = sum(is.na(ratio*keep)) )
                       ],by=.(yr,id)])
   user  system elapsed 
 25.997   0.191  26.217 

这允许我将所有公式放在一起(我可以添加 ratio*keep2ratio2*keepratio2*keep2)但是 1. 它比较慢 2. 它没有得到NA 的正确数量(参见 nmiss 列):

> summary(test1)
       yr             id              m               nmiss      
 Min.   :1962   Min.   :10001   Min.   : -2.154   Min.   :0.000  
 1st Qu.:1975   1st Qu.:10251   1st Qu.: 30.925   1st Qu.:0.000  
 Median :1988   Median :10500   Median : 53.828   Median :1.000  
 Mean   :1988   Mean   :10500   Mean   : 59.653   Mean   :1.207  
 3rd Qu.:2002   3rd Qu.:10750   3rd Qu.: 85.550   3rd Qu.:2.000  
 Max.   :2015   Max.   :11000   Max.   :211.552   Max.   :9.000  
> summary(test2)
       yr             id              m               nmiss      
 Min.   :1962   Min.   :10001   Min.   : -2.154   Min.   :0.000  
 1st Qu.:1975   1st Qu.:10251   1st Qu.: 30.925   1st Qu.:0.000  
 Median :1988   Median :10500   Median : 53.828   Median :1.000  
 Mean   :1988   Mean   :10500   Mean   : 59.653   Mean   :1.207  
 3rd Qu.:2002   3rd Qu.:10750   3rd Qu.: 85.550   3rd Qu.:2.000  
 Max.   :2015   Max.   :11000   Max.   :211.552   Max.   :9.000  
> summary(test3)
       yr             id              m               nmiss      
 Min.   :1962   Min.   :10001   Min.   : -2.154   Min.   : 0.00  
 1st Qu.:1975   1st Qu.:10251   1st Qu.: 30.925   1st Qu.: 2.00  
 Median :1988   Median :10500   Median : 53.828   Median : 4.00  
 Mean   :1988   Mean   :10500   Mean   : 59.653   Mean   : 4.99  
 3rd Qu.:2002   3rd Qu.:10750   3rd Qu.: 85.550   3rd Qu.: 8.00  
 Max.   :2015   Max.   :11000   Max.   :211.552   Max.   :20.00  

通过 yr-id 获取我的 4 种汇总信息组合的最快方法是什么? 现在,我重复使用选项 1 或 2 两次(一次用于 keep,另一次用于 keep2)

可以直接在j中的表达式中进行汇总:

# solution A: summarize in `.SD`:
system.time({
    test2 <- DT[keep == 1,
                .SD[, .(m = sum(ratio, na.rm = TRUE),
                        nmiss = sum(is.na(ratio)))],
                by = .(yr, id), verbose = T]
})
#    user  system elapsed 
#  22.359   0.439  22.561

# solution B: summarize directly in j:
system.time({
    test2 <- DT[keep == 1, .(m = sum(ratio, na.rm = T),
                             nmiss = sum(is.na(ratio))),
                by = .(yr, id), verbose = T]
})
#    user  system elapsed 
#   0.118   0.077   0.195
添加

verbose = T以显示两种方法之间的区别:

对于解决方案 A:

lapply optimization is on, j unchanged as '.SD[, list(m = sum(ratio, na.rm = TRUE), nmiss = sum(is.na(ratio)))]' GForce is on, left j unchanged

Old mean optimization is on, left j unchanged.

Making each group and running j (GForce FALSE) ... The result of j is

a named list. It's very inefficient to create the same names over and over again for each group.

当j=list(...)时,检测到任何名称, 为了提高效率,在分组完成后移除并放回原处。 例如,使用 j=transform() 会阻止加速(考虑 更改为 :=)。此消息将来可能会升级为警告。

收集不连续的组需要 0.058 秒,共 54000 个组
eval(j) 进行了 54000 次调用,耗时 22.487 秒 22.521 秒

对于解决方案 B:

...

Finding group sizes from the positions (can be avoided to save RAM) ... 0 sec lapply optimization is on, j unchanged as 'list(sum(ratio, na.rm = T), sum(is.na(ratio)))'

GForce is on, left j unchanged

Old mean optimization is on, left j unchanged. Making each group and running j (GForce FALSE) ... collecting discontiguous groups took 0.027s for 54000 groups eval(j) took 0.079s for 54000 calls 0.168 secs

主要区别在于 B 中的汇总被视为命名列表,当有很多组时(此数据为 54k 组!),这非常慢。有关此类型的类似基准,请参阅 this one.

第二部分(你的test3): 我们没有先按 keep = 1 过滤列。所以那些 NAkeep != 也算在 nmiss 中。因此,NA的计数是不同的。