我们如何才能找到对规则的先验支持和信心?
How can we find support and confident in apriori for rules?
我正在交易数据中进行项目关联。我在 R 中使用 arules 包来构建规则。
我正在与此 link https://1drv.ms/u/s!Ak1rt2E1f2gFgV9t7hMVAn0P4gd0
共享我的示例数据
library(arules)
library(arulesViz)
df = read.csv("trans.csv")
trans = as(split(df[,"Item"], df[,"Billno"]), "transactions")
inspect(trans[1:20])
summary(trans)
rules1 = apriori(trans,parameter = list(support = 0.6, confidence = 0.6,
target = "rules"))
summary(rules1) ##Output is "Set of 0 rules"
我得到的输出为,
Summary(rules1)
set of 0 rules
我在发布之前提到了 https://stats.stackexchange.com/questions/56034/association-analysis-returns-0-useful-rules 这个 link。我也尝试了随机数来获得支持和信心,但没有任何效果。
找到正确的最小支持度和最小置信度值并以 0 个频繁项集或 0 个关联规则结束的问题非常普遍。如果您需要复习支持和信心的确切含义,请阅读 this。
我们先来看看您的交易数据:
summary(trans)
transactions as itemMatrix in sparse format with
2531 rows (elements/itemsets/transactions) and
6632 columns (items) and a density of 0.0005951533
most frequent items:
AR845311 AR800369 AR828249 AR839869 AR831167 (Other)
84 35 31 29 24 9787
element (itemset/transaction) length distribution:
sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
767 509 306 238 160 112 100 52 69 50 31 27 18 12 13 15 9 10 7 5 4
23 24 25 27 28 32 34 36 48
3 4 2 3 1 1 1 1 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 2.000 3.947 5.000 48.000
首先要解决的问题是最低支持率。摘要表明您最常出现的项目 (AR845311
) 在数据集中出现了 84 次。您的商品总体上获得的支持度很低
summary(itemFrequency(trans))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0003951 0.0003951 0.0003951 0.0005952 0.0003951 0.0331900
你用了一分钟。 0.6的支持度,但是出现频率最高的单项只有0.033的支持度!你需要减少你的支持。如果您想找到在您的数据中至少出现 10 次的 itemsets/rules,那么您可以将最小支持度设置为:
10/length(trans)
[1] 0.003951008
第二个问题是您的数据非常稀疏(摘要显示密度约为 0.0006)。这意味着您的交易时间很短(即只包含很少的项目)。
table(size(trans))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
767 509 306 238 160 112 100 52 69 50 31 27 18 12 13 15 9 10 7 5 4
23 24 25 27 28 32 34 36 48
3 4 2 3 1 1 1 1 1
短期交易意味着对规则的信心可能会很低。对于你的数据结果是很低,所以我先用0。
rules <- apriori(trans,
+ parameter = list(support = 0.004, confidence = 0, target = "rules"))
Apriori
Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen maxlen
0 0.1 1 none FALSE TRUE 5 0.004 1 10
target ext
rules FALSE
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
Absolute minimum support count: 10
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[6632 item(s), 2531 transaction(s)] done [0.00s].
sorting and recoding items ... [40 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 done [0.00s].
writing ... [46 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
> summary(rules)
set of 46 rules
rule length distribution (lhs + rhs):sizes
1 2
40 6
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 1.00 1.00 1.13 1.00 2.00
summary of quality measures:
support confidence lift count
Min. :0.004346 Min. :0.004346 Min. : 1.000 Min. :11.00
1st Qu.:0.004741 1st Qu.:0.004840 1st Qu.: 1.000 1st Qu.:12.00
Median :0.005531 Median :0.005729 Median : 1.000 Median :14.00
Mean :0.006803 Mean :0.057301 Mean : 3.316 Mean :17.22
3rd Qu.:0.007112 3rd Qu.:0.008890 3rd Qu.: 1.000 3rd Qu.:18.00
Max. :0.033188 Max. :0.705882 Max. :21.269 Max. :84.00
mining info:
data ntransactions support confidence
trans 2531 0.004 0
结果表明至少有一条置信度为0.7的规则。您可以更有信心地再次 运行 APRIORI。以下是置信度最高的规则:
inspect(head(rules, by = "confidence"))
lhs rhs support confidence lift count
[1] {AR835501} => {AR845311} 0.004741209 0.7058824 21.26891 12
[2] {AR743988} => {AR845311} 0.004346108 0.6470588 19.49650 11
[3] {AR800369} => {AR845311} 0.007111814 0.5142857 15.49592 18
[4] {AR845311} => {AR800369} 0.007111814 0.2142857 15.49592 18
[5] {AR845311} => {AR835501} 0.004741209 0.1428571 21.26891 12
[6] {AR845311} => {AR743988} 0.004346108 0.1309524 19.49650 11
可以找到有关如何使用关联规则挖掘的完整示例 here。
希望对您有所帮助!
我正在交易数据中进行项目关联。我在 R 中使用 arules 包来构建规则。 我正在与此 link https://1drv.ms/u/s!Ak1rt2E1f2gFgV9t7hMVAn0P4gd0
共享我的示例数据library(arules)
library(arulesViz)
df = read.csv("trans.csv")
trans = as(split(df[,"Item"], df[,"Billno"]), "transactions")
inspect(trans[1:20])
summary(trans)
rules1 = apriori(trans,parameter = list(support = 0.6, confidence = 0.6,
target = "rules"))
summary(rules1) ##Output is "Set of 0 rules"
我得到的输出为,
Summary(rules1)
set of 0 rules
我在发布之前提到了 https://stats.stackexchange.com/questions/56034/association-analysis-returns-0-useful-rules 这个 link。我也尝试了随机数来获得支持和信心,但没有任何效果。
找到正确的最小支持度和最小置信度值并以 0 个频繁项集或 0 个关联规则结束的问题非常普遍。如果您需要复习支持和信心的确切含义,请阅读 this。
我们先来看看您的交易数据:
summary(trans)
transactions as itemMatrix in sparse format with
2531 rows (elements/itemsets/transactions) and
6632 columns (items) and a density of 0.0005951533
most frequent items:
AR845311 AR800369 AR828249 AR839869 AR831167 (Other)
84 35 31 29 24 9787
element (itemset/transaction) length distribution:
sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
767 509 306 238 160 112 100 52 69 50 31 27 18 12 13 15 9 10 7 5 4
23 24 25 27 28 32 34 36 48
3 4 2 3 1 1 1 1 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 2.000 3.947 5.000 48.000
首先要解决的问题是最低支持率。摘要表明您最常出现的项目 (AR845311
) 在数据集中出现了 84 次。您的商品总体上获得的支持度很低
summary(itemFrequency(trans))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0003951 0.0003951 0.0003951 0.0005952 0.0003951 0.0331900
你用了一分钟。 0.6的支持度,但是出现频率最高的单项只有0.033的支持度!你需要减少你的支持。如果您想找到在您的数据中至少出现 10 次的 itemsets/rules,那么您可以将最小支持度设置为:
10/length(trans)
[1] 0.003951008
第二个问题是您的数据非常稀疏(摘要显示密度约为 0.0006)。这意味着您的交易时间很短(即只包含很少的项目)。
table(size(trans))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
767 509 306 238 160 112 100 52 69 50 31 27 18 12 13 15 9 10 7 5 4
23 24 25 27 28 32 34 36 48
3 4 2 3 1 1 1 1 1
短期交易意味着对规则的信心可能会很低。对于你的数据结果是很低,所以我先用0。
rules <- apriori(trans,
+ parameter = list(support = 0.004, confidence = 0, target = "rules"))
Apriori
Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen maxlen
0 0.1 1 none FALSE TRUE 5 0.004 1 10
target ext
rules FALSE
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
Absolute minimum support count: 10
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[6632 item(s), 2531 transaction(s)] done [0.00s].
sorting and recoding items ... [40 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 done [0.00s].
writing ... [46 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
> summary(rules)
set of 46 rules
rule length distribution (lhs + rhs):sizes
1 2
40 6
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 1.00 1.00 1.13 1.00 2.00
summary of quality measures:
support confidence lift count
Min. :0.004346 Min. :0.004346 Min. : 1.000 Min. :11.00
1st Qu.:0.004741 1st Qu.:0.004840 1st Qu.: 1.000 1st Qu.:12.00
Median :0.005531 Median :0.005729 Median : 1.000 Median :14.00
Mean :0.006803 Mean :0.057301 Mean : 3.316 Mean :17.22
3rd Qu.:0.007112 3rd Qu.:0.008890 3rd Qu.: 1.000 3rd Qu.:18.00
Max. :0.033188 Max. :0.705882 Max. :21.269 Max. :84.00
mining info:
data ntransactions support confidence
trans 2531 0.004 0
结果表明至少有一条置信度为0.7的规则。您可以更有信心地再次 运行 APRIORI。以下是置信度最高的规则:
inspect(head(rules, by = "confidence"))
lhs rhs support confidence lift count
[1] {AR835501} => {AR845311} 0.004741209 0.7058824 21.26891 12
[2] {AR743988} => {AR845311} 0.004346108 0.6470588 19.49650 11
[3] {AR800369} => {AR845311} 0.007111814 0.5142857 15.49592 18
[4] {AR845311} => {AR800369} 0.007111814 0.2142857 15.49592 18
[5] {AR845311} => {AR835501} 0.004741209 0.1428571 21.26891 12
[6] {AR845311} => {AR743988} 0.004346108 0.1309524 19.49650 11
可以找到有关如何使用关联规则挖掘的完整示例 here。
希望对您有所帮助!