nlm() 或 optimize() 比 R 中的 optim() 更精确

are nlm() or optimize() more precise than optim() in R

我正在尝试在名为 GGG.

的函数中更精确地(最多 6 位小数)估计 x[1]x[2]

使用 optim,我得到了小数点后 3 位的精度,但我想知道如何才能将精度提高到至少 6 位小数?

optimizenlm 可以用于这个目标吗?

GGG = function(Low, High, p1, p2) {


f <- function(x) {

 y <- c(Low, High) - qcauchy(c(p1, p2), location=x[1],  scale=x[2]) 

 }


## SOLVE:  
AA <- optim(c(1,1), function(x) sum(f(x)^2) )  

## return parameters:
parms = unname(AA$par)   


return(parms)     ## Correct but up to 3 decimal places 

}

 ## TEST:
 AAA <- GGG (Low = -3, High = 3, p1 = .025, p2 = .975)


 ## CHECK:
 q <- qcauchy( c(.025, .975), AAA[1], AAA[2] ) # What comes out of "q" MUST match "Low" and 
                                               # "High" up to 6 decimal places

optim 函数有一个公差控制参数。用这个替换你的优化函数:

AA <- optim(c(1,1), function(x) sum(f(x)^2), control=list(reltol=(.Machine$double.eps)))

Returns:

> q
[1] -3  3
> AAA
[1] 5.956798e-08 2.361051e-01