如何在 Oracle 中使用模糊匹配获得准确的 JOIN

How to get an accurate JOIN using Fuzzy matching in Oracle

我正在尝试将一个 table 中的一组县名与另一个 table 中的县名合并。这里的问题是,两个 table 中的县名都没有规范化。它们的数量不一样;此外,它们可能并不总是以相似的模式出现。例如,"Table A" 中的 'SAINT JOHNS' 县可能在 "Table B" 中表示为 'ST JOHNS'。我们无法预测它们的共同模式。

也就是说,我们不能在加入时使用"equal to"(=)条件。所以,我正在尝试使用 oracle 中的 JARO_WINKLER_SIMILARITY 函数加入他们。 我的 Left Outer Join 条件如下:

Table_A.State = Table_B.State 
AND UTL_MATCH.JARO_WINKLER_SIMILARITY(Table_A.County_Name,Table_B.County_Name)>=80

在对结果进行一些测试后,我给了 80 分,这似乎是最佳的。 在这里,问题是我在加入时设置了 "false Positives"。例如,如果同一州下有一些名称相似的县(例如"BARRY'and "BAY"),则如果度量为>=80,则将匹配它们。 这会创建不准确的连接数据集。 任何人都可以提出一些解决方法吗?

谢谢, DAV

Can you plz help me to build a query that will lookup Table_A for each record in Table B/C/D, and match against the county name in A with highest ranked similarity that is >=80

Oracle 设置:

CREATE TABLE official_words ( word ) AS
  SELECT 'SAINT JOHNS' FROM DUAL UNION ALL
  SELECT 'MONTGOMERY' FROM DUAL UNION ALL
  SELECT 'MONROE' FROM DUAL UNION ALL
  SELECT 'SAINT JAMES' FROM DUAL UNION ALL
  SELECT 'BOTANY BAY' FROM DUAL;

CREATE TABLE words_to_match ( word ) AS
  SELECT 'SAINT JOHN' FROM DUAL UNION ALL
  SELECT 'ST JAMES' FROM DUAL UNION ALL
  SELECT 'MONTGOMERY BAY' FROM DUAL UNION ALL
  SELECT 'MONROE ST' FROM DUAL;

查询:

SELECT *
FROM   (
  SELECT wtm.word,
         ow.word AS official_word,
         UTL_MATCH.JARO_WINKLER_SIMILARITY( wtm.word, ow.word ) AS similarity,
         ROW_NUMBER() OVER ( PARTITION BY wtm.word ORDER BY UTL_MATCH.JARO_WINKLER_SIMILARITY( wtm.word, ow.word ) DESC ) AS rn
  FROM   words_to_match wtm
         INNER JOIN
         official_words ow
         ON ( UTL_MATCH.JARO_WINKLER_SIMILARITY( wtm.word, ow.word )>=80 )
)
WHERE rn = 1;

输出:

WORD           OFFICIAL_WO SIMILARITY         RN
-------------- ----------- ---------- ----------
MONROE ST      MONROE              93          1
MONTGOMERY BAY MONTGOMERY          94          1
SAINT JOHN     SAINT JOHNS         98          1
ST JAMES       SAINT JAMES         80          1

内联使用一些虚构的测试数据(您可以使用自己的 TABLE_A 和 TABLE_B 代替前两个 with 子句,并从 with matches as ... 开始):

with table_a (state, county_name) as
     ( select 'A', 'ST JOHNS' from dual union all
       select 'A', 'BARRY' from dual union all
       select 'B', 'CHEESECAKE' from dual union all
       select 'B', 'WAFFLES' from dual union all
       select 'C', 'UMBRELLAS' from dual )
   , table_b (state, county_name) as
     ( select 'A', 'SAINT JOHNS' from dual union all
       select 'A', 'SAINT JOANS' from dual union all
       select 'A', 'BARRY' from dual union all
       select 'A', 'BARRIERS' from dual union all
       select 'A', 'BANANA' from dual union all
       select 'A', 'BANOFFEE' from dual union all
       select 'B', 'CHEESE' from dual union all
       select 'B', 'CHIPS' from dual union all
       select 'B', 'CHICKENS' from dual union all
       select 'B', 'WAFFLING' from dual union all
       select 'B', 'KITTENS' from dual union all
       select 'C', 'PUPPIES' from dual union all
       select 'C', 'UMBRIA' from dual union all
       select 'C', 'UMBRELLAS' from dual )
   , matches as
     ( select a.state, a.county_name, b.county_name as matched_name
            , utl_match.jaro_winkler_similarity(a.county_name,b.county_name) as score
       from   table_a a
              join table_b b on b.state = a.state  )
   , ranked_matches as
     ( select m.*
            , rank() over (partition by m.state, m.county_name order by m.score desc) as ranking
       from   matches m
       where  score > 50 )
select rm.state, rm.county_name, rm. matched_name, rm.score
from   ranked_matches rm
where  ranking = 1
order by 1,2;

结果:

STATE COUNTY_NAME MATCHED_NAME      SCORE
----- ----------- ------------ ----------
A     BARRY       BARRY               100
A     ST JOHNS    SAINT JOHNS          80
B     CHEESECAKE  CHEESE               92
B     WAFFLES     WAFFLING             86
C     UMBRELLAS   UMBRELLAS           100

想法是 matches 计算所有得分,ranked_matches 为它们分配一个序列(statecounty_name),最后的查询选择所有得分最高的球员(即过滤 ranking = 1)。

您可能仍然会得到一些重复项,因为没有什么可以阻止两个不同的模糊匹配得分相同。