Python 中是否已经实现了一些东西来计算多类混淆矩阵的 TP、TN、FP 和 FN?
Is there something already implemented in Python to calculate TP, TN, FP, and FN for multiclass confusion matrix?
Sklearn.metrics
具有获取 class化指标的强大功能,尽管我认为缺少的东西是 return TP、FN、FP 和 FN 计数的功能预测和实际标签序列。甚至来自混淆矩阵。
我知道可以使用 sklearn
获得混淆矩阵,但我需要实际的 TP、FN、FP 和 FN 计数(对于多标签 classification - 超过 2 个标签),并获得每个 classes.
的计数
也就是说,我有下面的混淆矩阵,其中有 3 个 classes。是否有一些软件包可以从中获取每个 class 的计数?我找不到任何东西。
Scikit-learn 可以计算和绘制多类混淆矩阵,请参阅文档中的示例 (Demo on a Jupiter notebook):
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
class_names = iris.target_names
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
classifier = svm.SVC(kernel='linear', C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,
title='Confusion matrix, without normalization')
# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
title='Normalized confusion matrix')
plt.show()
结果 (txt):
Confusion matrix, without normalization
[[13 0 0]
[ 0 10 6]
[ 0 0 9]]
Normalized confusion matrix
[[ 1. 0. 0. ]
[ 0. 0.62 0.38]
[ 0. 0. 1. ]]
绘图结果:
请参阅下面的 link 工作代码:
DEMO ON A JUPYTER NOTEBOOK
我最终自己实现了它,因为我没有找到任何东西。这是代码,以防将来其他人查找此代码:
def counts_from_confusion(confusion):
"""
Obtain TP, FN FP, and TN for each class in the confusion matrix
"""
counts_list = []
# Iterate through classes and store the counts
for i in range(confusion.shape[0]):
tp = confusion[i, i]
fn_mask = np.zeros(confusion.shape)
fn_mask[i, :] = 1
fn_mask[i, i] = 0
fn = np.sum(np.multiply(confusion, fn_mask))
fp_mask = np.zeros(confusion.shape)
fp_mask[:, i] = 1
fp_mask[i, i] = 0
fp = np.sum(np.multiply(confusion, fp_mask))
tn_mask = 1 - (fn_mask + fp_mask)
tn_mask[i, i] = 0
tn = np.sum(np.multiply(confusion, tn_mask))
counts_list.append({'Class': i,
'TP': tp,
'FN': fn,
'FP': fp,
'TN': tn})
return counts_list
Sklearn.metrics
具有获取 class化指标的强大功能,尽管我认为缺少的东西是 return TP、FN、FP 和 FN 计数的功能预测和实际标签序列。甚至来自混淆矩阵。
我知道可以使用 sklearn
获得混淆矩阵,但我需要实际的 TP、FN、FP 和 FN 计数(对于多标签 classification - 超过 2 个标签),并获得每个 classes.
也就是说,我有下面的混淆矩阵,其中有 3 个 classes。是否有一些软件包可以从中获取每个 class 的计数?我找不到任何东西。
Scikit-learn 可以计算和绘制多类混淆矩阵,请参阅文档中的示例 (Demo on a Jupiter notebook):
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
class_names = iris.target_names
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
classifier = svm.SVC(kernel='linear', C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,
title='Confusion matrix, without normalization')
# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
title='Normalized confusion matrix')
plt.show()
结果 (txt):
Confusion matrix, without normalization
[[13 0 0]
[ 0 10 6]
[ 0 0 9]]
Normalized confusion matrix
[[ 1. 0. 0. ]
[ 0. 0.62 0.38]
[ 0. 0. 1. ]]
绘图结果:
请参阅下面的 link 工作代码:
DEMO ON A JUPYTER NOTEBOOK
我最终自己实现了它,因为我没有找到任何东西。这是代码,以防将来其他人查找此代码:
def counts_from_confusion(confusion):
"""
Obtain TP, FN FP, and TN for each class in the confusion matrix
"""
counts_list = []
# Iterate through classes and store the counts
for i in range(confusion.shape[0]):
tp = confusion[i, i]
fn_mask = np.zeros(confusion.shape)
fn_mask[i, :] = 1
fn_mask[i, i] = 0
fn = np.sum(np.multiply(confusion, fn_mask))
fp_mask = np.zeros(confusion.shape)
fp_mask[:, i] = 1
fp_mask[i, i] = 0
fp = np.sum(np.multiply(confusion, fp_mask))
tn_mask = 1 - (fn_mask + fp_mask)
tn_mask[i, i] = 0
tn = np.sum(np.multiply(confusion, tn_mask))
counts_list.append({'Class': i,
'TP': tp,
'FN': fn,
'FP': fp,
'TN': tn})
return counts_list