无法更新 Python Cloud Dataflow 中的工作状态异常
Failed to update work status Exception in Python Cloud Dataflow
我有一个 Python Cloud Dataflow 作业,它在较小的子集上运行良好,但在完整数据集上似乎没有明显原因而失败。
我在 Dataflow 界面中遇到的唯一错误是标准错误消息:
A work item was attempted 4 times without success. Each time the worker eventually lost contact with the service.
分析 Stackdriver 日志仅显示此错误:
Exception in worker loop: Traceback (most recent call last): File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py", line 736, in run deferred_exception_details=deferred_exception_details) File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py", line 590, in do_work exception_details=exception_details) File "/usr/local/lib/python2.7/dist-packages/apache_beam/utils/retry.py", line 167, in wrapper return fun(*args, **kwargs) File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py", line 454, in report_completion_status exception_details=exception_details) File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py", line 266, in report_status work_executor=self._work_executor) File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/workerapiclient.py", line 364, in report_status response = self._client.projects_jobs_workItems.ReportStatus(request) File "/usr/local/lib/python2.7/dist-packages/apache_beam/internal/clients/dataflow/dataflow_v1b3_client.py", line 210, in ReportStatus config, request, global_params=global_params) File "/usr/local/lib/python2.7/dist-packages/apitools/base/py/base_api.py", line 723, in _RunMethod return self.ProcessHttpResponse(method_config, http_response, request) File "/usr/local/lib/python2.7/dist-packages/apitools/base/py/base_api.py", line 729, in ProcessHttpResponse self.__ProcessHttpResponse(method_config, http_response, request)) File "/usr/local/lib/python2.7/dist-packages/apitools/base/py/base_api.py", line 599, in __ProcessHttpResponse http_response.request_url, method_config, request) HttpError: HttpError accessing https://dataflow.googleapis.com/v1b3/projects//jobs/2017-05-03_03_33_40-3860129055041750274/workItems:reportStatus?alt=json>: response: <{'status': '400', 'content-length': '360', 'x-xss-protection': '1; mode=block', 'x-content-type-options': 'nosniff', 'transfer-encoding': 'chunked', 'vary': 'Origin, X-Origin, Referer', 'server': 'ESF', '-content-encoding': 'gzip', 'cache-control': 'private', 'date': 'Wed, 03 May 2017 16:46:11 GMT', 'x-frame-options': 'SAMEORIGIN', 'content-type': 'application/json; charset=UTF-8'}>, content <{ "error": { "code": 400, "message": "(2a7b20b33659c46e): Failed to publish the result of the work update. Causes: (2a7b20b33659c523): Failed to update work status. Causes: (8a8b13f5c3a944ba): Failed to update work status., (8a8b13f5c3a945d9): Work \"4047499437681669251\" not leased (or the lease was lost).", "status": "INVALID_ARGUMENT" } } >
我假设这个 Failed to update work status
错误与 Cloud Runner 有关?但是由于我在网上没有找到关于这个错误的任何信息,我想知道是否有其他人遇到过它并且有更好的解释?
我正在使用 Google Cloud Dataflow SDK for Python 0.5.5
。
租约到期的一个主要原因与 VM 上的内存压力有关。您可以 运行 在具有更高内存的机器上尝试您的工作。特别是,highmem 机器类型应该可以解决问题。
有关机器类型的更多信息,请查看 GCE Documentation
下一个 Dataflow 版本 (2.0.0) 应该能够更好地处理这些情况。
我有一个 Python Cloud Dataflow 作业,它在较小的子集上运行良好,但在完整数据集上似乎没有明显原因而失败。
我在 Dataflow 界面中遇到的唯一错误是标准错误消息:
A work item was attempted 4 times without success. Each time the worker eventually lost contact with the service.
分析 Stackdriver 日志仅显示此错误:
Exception in worker loop: Traceback (most recent call last): File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py", line 736, in run deferred_exception_details=deferred_exception_details) File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py", line 590, in do_work exception_details=exception_details) File "/usr/local/lib/python2.7/dist-packages/apache_beam/utils/retry.py", line 167, in wrapper return fun(*args, **kwargs) File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py", line 454, in report_completion_status exception_details=exception_details) File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py", line 266, in report_status work_executor=self._work_executor) File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/workerapiclient.py", line 364, in report_status response = self._client.projects_jobs_workItems.ReportStatus(request) File "/usr/local/lib/python2.7/dist-packages/apache_beam/internal/clients/dataflow/dataflow_v1b3_client.py", line 210, in ReportStatus config, request, global_params=global_params) File "/usr/local/lib/python2.7/dist-packages/apitools/base/py/base_api.py", line 723, in _RunMethod return self.ProcessHttpResponse(method_config, http_response, request) File "/usr/local/lib/python2.7/dist-packages/apitools/base/py/base_api.py", line 729, in ProcessHttpResponse self.__ProcessHttpResponse(method_config, http_response, request)) File "/usr/local/lib/python2.7/dist-packages/apitools/base/py/base_api.py", line 599, in __ProcessHttpResponse http_response.request_url, method_config, request) HttpError: HttpError accessing https://dataflow.googleapis.com/v1b3/projects//jobs/2017-05-03_03_33_40-3860129055041750274/workItems:reportStatus?alt=json>: response: <{'status': '400', 'content-length': '360', 'x-xss-protection': '1; mode=block', 'x-content-type-options': 'nosniff', 'transfer-encoding': 'chunked', 'vary': 'Origin, X-Origin, Referer', 'server': 'ESF', '-content-encoding': 'gzip', 'cache-control': 'private', 'date': 'Wed, 03 May 2017 16:46:11 GMT', 'x-frame-options': 'SAMEORIGIN', 'content-type': 'application/json; charset=UTF-8'}>, content <{ "error": { "code": 400, "message": "(2a7b20b33659c46e): Failed to publish the result of the work update. Causes: (2a7b20b33659c523): Failed to update work status. Causes: (8a8b13f5c3a944ba): Failed to update work status., (8a8b13f5c3a945d9): Work \"4047499437681669251\" not leased (or the lease was lost).", "status": "INVALID_ARGUMENT" } } >
我假设这个 Failed to update work status
错误与 Cloud Runner 有关?但是由于我在网上没有找到关于这个错误的任何信息,我想知道是否有其他人遇到过它并且有更好的解释?
我正在使用 Google Cloud Dataflow SDK for Python 0.5.5
。
租约到期的一个主要原因与 VM 上的内存压力有关。您可以 运行 在具有更高内存的机器上尝试您的工作。特别是,highmem 机器类型应该可以解决问题。
有关机器类型的更多信息,请查看 GCE Documentation
下一个 Dataflow 版本 (2.0.0) 应该能够更好地处理这些情况。