安全地评估简单的字符串方程

Safely evaluate simple string equation

我正在编写一个程序,其中将方程作为字符串输入,然后计算。到目前为止,我想出了这个:

test_24_string = str(input("Enter your answer: "))
test_24 = eval(test_24_string)

我需要这个等式的字符串版本和计算版本。但是,eval 是一个非常危险的函数。但是,使用 int() 不起作用,因为它是一个等式。是否有 Python 函数可以像输入数字一样从字符串计算数学表达式?

一种方法是使用 . It's mostly a module for optimizing (and multithreading) 运算,但它也可以处理数学 python 表达式:

>>> import numexpr
>>> numexpr.evaluate('2 + 4.1 * 3')
array(14.299999999999999)

您可以对结果调用 .item 以获得类似 python 的类型:

>>> numexpr.evaluate('17 / 3').item()
5.666666666666667

它是第 3 方扩展模块,所以在这里可能有点矫枉过正,但它绝对比 eval 更安全,并且支持相当多的功能(包括 numpymath 操作) .如果还支持 "variable substitution":

>>> b = 10
>>> numexpr.evaluate('exp(17) / b').item()
2415495.27535753

python 标准库的一种方法,尽管非常有限,但 ast.literal_eval。它适用于 Python:

中最基本的数据类型和文字
>>> import ast
>>> ast.literal_eval('1+2')
3

但使用更复杂的表达式失败,例如:

>>> ast.literal_eval('import os')
SyntaxError: invalid syntax

>>> ast.literal_eval('exec(1+2)')
ValueError: malformed node or string: <_ast.Call object at 0x0000023BDEADB400>

不幸的是,除了 +- 之外的任何运算符都是不可能的:

>>> ast.literal_eval('1.2 * 2.3')
ValueError: malformed node or string: <_ast.BinOp object at 0x0000023BDEF24B70>

我在此处复制了部分文档,其中包含受支持的类型:

Safely evaluate an expression node or a string containing a Python literal or container display. The string or node provided may only consist of the following Python literal structures: strings, bytes, numbers, tuples, lists, dicts, sets, booleans, and None.

编写后缀表达式计算器并不难。下面是一个工作示例。 (还有 available 在 github 上。)

import operator
import math

_add, _sub, _mul = operator.add, operator.sub, operator.mul
_truediv, _pow, _sqrt = operator.truediv, operator.pow, math.sqrt
_sin, _cos, _tan, _radians = math.sin, math.cos, math.tan, math.radians
_asin, _acos, _atan = math.asin, math.acos, math.atan
_degrees, _log, _log10 = math.degrees, math.log, math.log10
_e, _pi = math.e, math.pi
_ops = {'+': (2, _add), '-': (2, _sub), '*': (2, _mul), '/': (2, _truediv),
        '**': (2, _pow), 'sin': (1, _sin), 'cos': (1, _cos), 'tan': (1, _tan),
        'asin': (1, _asin), 'acos': (1, _acos), 'atan': (1, _atan),
        'sqrt': (1, _sqrt), 'rad': (1, _radians), 'deg': (1, _degrees),
        'ln': (1, _log), 'log': (1, _log10)}
_okeys = tuple(_ops.keys())
_consts = {'e': _e, 'pi': _pi}
_ckeys = tuple(_consts.keys())


def postfix(expression):
    """
    Evaluate a postfix expression.

    Arguments:
        expression: The expression to evaluate. Should be a string or a
                    sequence of strings. In a string numbers and operators
                    should be separated by whitespace

    Returns:
        The result of the expression.
    """
    if isinstance(expression, str):
        expression = expression.split()
    stack = []
    for val in expression:
        if val in _okeys:
            n, op = _ops[val]
            if n > len(stack):
                raise ValueError('not enough data on the stack')
            args = stack[-n:]
            stack[-n:] = [op(*args)]
        elif val in _ckeys:
            stack.append(_consts[val])
        else:
            stack.append(float(val))
    return stack[-1]

用法:

In [2]: from postfix import postfix

In [3]: postfix('1 2 + 7 /')
Out[3]: 0.42857142857142855

In [4]: 3/7
Out[4]: 0.42857142857142855

我遇到了同样的问题并解决了这个问题:

def safe_math_eval(string):
    allowed_chars = "0123456789+-*(). /"
    for char in string:
        if char not in allowed_chars:
            raise Exception("Unsafe eval")

    return eval(string)

那里可能仍然存在我看不到的安全问题。 如果有安全问题请告诉我。

我这样做是因为我需要回答同样的问题。很容易适应。

import math
import ast
import operator as op

class MathParser:
    """ Basic parser with local variable and math functions 
    
    Args:
       vars (mapping): mapping object where obj[name] -> numerical value 
       math (bool, optional): if True (default) all math function are added in the same name space
       
    Example:
       
       data = {'r': 3.4, 'theta': 3.141592653589793}
       parser = MathParser(data)
       assert parser.parse('r*cos(theta)') == -3.4
       data['theta'] =0.0
       assert parser.parse('r*cos(theta)') == 3.4
    """
        
    _operators2method = {
        ast.Add: op.add, 
        ast.Sub: op.sub, 
        ast.BitXor: op.xor, 
        ast.Or:  op.or_, 
        ast.And: op.and_, 
        ast.Mod:  op.mod,
        ast.Mult: op.mul,
        ast.Div:  op.truediv,
        ast.Pow:  op.pow,
        ast.FloorDiv: op.floordiv,              
        ast.USub: op.neg, 
        ast.UAdd: lambda a:a  
    }
    
    def __init__(self, vars, math=True):
        self._vars = vars
        if not math:
            self._alt_name = self._no_alt_name
        
    def _Name(self, name):
        try:
            return  self._vars[name]
        except KeyError:
            return self._alt_name(name)
                
    @staticmethod
    def _alt_name(name):
        if name.startswith("_"):
            raise NameError(f"{name!r}") 
        try:
            return  getattr(math, name)
        except AttributeError:
            raise NameError(f"{name!r}") 
    
    @staticmethod
    def _no_alt_name(name):
        raise NameError(f"{name!r}") 
    
    def eval_(self, node):
        if isinstance(node, ast.Expression):
            return self.eval_(node.body)
        if isinstance(node, ast.Num): # <number>
            return node.n
        if isinstance(node, ast.Name):
            return self._Name(node.id) 
        if isinstance(node, ast.BinOp):            
            method = self._operators2method[type(node.op)]                      
            return method( self.eval_(node.left), self.eval_(node.right) )            
        if isinstance(node, ast.UnaryOp):             
            method = self._operators2method[type(node.op)]  
            return method( self.eval_(node.operand) )
        if isinstance(node, ast.Attribute):
            return getattr(self.eval_(node.value), node.attr)
            
        if isinstance(node, ast.Call):            
            return self.eval_(node.func)( 
                      *(self.eval_(a) for a in node.args),
                      **{k.arg:self.eval_(k.value) for k in node.keywords}
                     )           
            return self.Call( self.eval_(node.func), tuple(self.eval_(a) for a in node.args))
        else:
            raise TypeError(node)
    
    def parse(self, expr):
        return  self.eval_(ast.parse(expr, mode='eval'))          
    

测试与使用

    assert MathParser({"x":4.5}).parse('x*2') == 9
    assert MathParser({}).parse('cos(pi)') == -1.0
        
    data = {'r': 3.4, 'theta': 3.141592653589793}
    parser = MathParser(data)
    assert parser.parse('r*cos(theta)') == -3.4
    data['theta'] = 0.0
    assert parser.parse('r*cos(theta)') == 3.4
    assert MathParser(globals()).parse('math.pi') == math.pi
    
    assert MathParser({'f':lambda x,n=10: x*n}).parse('f(2,20)') == 40
    assert MathParser({'f':lambda x,n=10: x*n}).parse('f(2,n=20)') == 40