递归 Prolog 谓词?
recursive Prolog predicate?
我目前正在做一个项目,我想在 Prolog 中实现辅助谓词
break_down(N, L)
其工作方式如下
?- break_down(1,L).
L = [1] ;
false.
?- break_down(4,L).
L = [1, 1, 1, 1] ;
L = [1, 1, 2] ;
L = [1, 3] ;
L = [2, 2] ;
L = [4] ;
false.
对于任何正整数 N 依此类推。
我已经尝试并实现了一个只生成第一个结果的代码,我无法获得其余的结果,这是我的代码
break_down(1,[1]).
break_down(N,L):-
N>0,
N1 is N-1,
break_down(N1,L1),
append(L1,[1],L).
只生成第一个输出结果:
L = [1, 1, 1, 1] ;
关于如何编辑我的代码以获得其余部分的任何建议?
这是一个使用普通整数运算和回溯的直接递归实现:
break_down(N,L) :-
break_ref_down(N,1,L). % reference item is initially 1
break_ref_down(0,_,[]).
break_ref_down(N,Z0,[Z|Zs]) :-
between(Z0,N,Z), % multiple choices
N0 is N-Z,
break_ref_down(N0,Z,Zs). % pass on current item as reference
示例查询:
?- break_down(8,Zs).
Zs = [1,1,1,1,1,1,1,1]
; Zs = [1,1,1,1,1,1,2]
; Zs = [1,1,1,1,1,3]
; Zs = [1,1,1,1,2,2]
; Zs = [1,1,1,1,4]
; Zs = [1,1,1,2,3]
; Zs = [1,1,1,5]
; Zs = [1,1,2,2,2]
; Zs = [1,1,2,4]
; Zs = [1,1,3,3]
; Zs = [1,1,6]
; Zs = [1,2,2,3]
; Zs = [1,2,5]
; Zs = [1,3,4]
; Zs = [1,7]
; Zs = [2,2,2,2]
; Zs = [2,2,4]
; Zs = [2,3,3]
; Zs = [2,6]
; Zs = [3,5]
; Zs = [4,4]
; Zs = [8]
; false.
这是一个基于clpfd的实现。
:- use_module(library(clpfd)).
由于谓词break_downFD/2
是非递归的,代码既可读又简单:
break_downFD(N,Zs) :-
length(Max,N), % multiple choices
append(_,Zs,Max),
Zs ins 1..N,
sum(Zs,#=,N),
chain(Zs,#=<), % enforce sequence is non-descending
labeling([],Zs). % multiple choices, possibly
使用 SWI-Prolog 的示例查询:
?- break_downFD(6,Zs).
Zs = [1,1,1,1,1,1]
; Zs = [1,1,1,1,2]
; Zs = [1,1,1,3]
; Zs = [1,1,2,2]
; Zs = [1,1,4]
; Zs = [1,2,3]
; Zs = [2,2,2]
; Zs = [1,5]
; Zs = [2,4]
; Zs = [3,3]
; Zs = [6]
; false.
我目前正在做一个项目,我想在 Prolog 中实现辅助谓词
break_down(N, L)
其工作方式如下
?- break_down(1,L).
L = [1] ;
false.
?- break_down(4,L).
L = [1, 1, 1, 1] ;
L = [1, 1, 2] ;
L = [1, 3] ;
L = [2, 2] ;
L = [4] ;
false.
对于任何正整数 N 依此类推。
我已经尝试并实现了一个只生成第一个结果的代码,我无法获得其余的结果,这是我的代码
break_down(1,[1]).
break_down(N,L):-
N>0,
N1 is N-1,
break_down(N1,L1),
append(L1,[1],L).
只生成第一个输出结果:
L = [1, 1, 1, 1] ;
关于如何编辑我的代码以获得其余部分的任何建议?
这是一个使用普通整数运算和回溯的直接递归实现:
break_down(N,L) :-
break_ref_down(N,1,L). % reference item is initially 1
break_ref_down(0,_,[]).
break_ref_down(N,Z0,[Z|Zs]) :-
between(Z0,N,Z), % multiple choices
N0 is N-Z,
break_ref_down(N0,Z,Zs). % pass on current item as reference
示例查询:
?- break_down(8,Zs).
Zs = [1,1,1,1,1,1,1,1]
; Zs = [1,1,1,1,1,1,2]
; Zs = [1,1,1,1,1,3]
; Zs = [1,1,1,1,2,2]
; Zs = [1,1,1,1,4]
; Zs = [1,1,1,2,3]
; Zs = [1,1,1,5]
; Zs = [1,1,2,2,2]
; Zs = [1,1,2,4]
; Zs = [1,1,3,3]
; Zs = [1,1,6]
; Zs = [1,2,2,3]
; Zs = [1,2,5]
; Zs = [1,3,4]
; Zs = [1,7]
; Zs = [2,2,2,2]
; Zs = [2,2,4]
; Zs = [2,3,3]
; Zs = [2,6]
; Zs = [3,5]
; Zs = [4,4]
; Zs = [8]
; false.
这是一个基于clpfd的实现。
:- use_module(library(clpfd)).
由于谓词break_downFD/2
是非递归的,代码既可读又简单:
break_downFD(N,Zs) :-
length(Max,N), % multiple choices
append(_,Zs,Max),
Zs ins 1..N,
sum(Zs,#=,N),
chain(Zs,#=<), % enforce sequence is non-descending
labeling([],Zs). % multiple choices, possibly
使用 SWI-Prolog 的示例查询:
?- break_downFD(6,Zs).
Zs = [1,1,1,1,1,1]
; Zs = [1,1,1,1,2]
; Zs = [1,1,1,3]
; Zs = [1,1,2,2]
; Zs = [1,1,4]
; Zs = [1,2,3]
; Zs = [2,2,2]
; Zs = [1,5]
; Zs = [2,4]
; Zs = [3,3]
; Zs = [6]
; false.