Pandas read_hdf 对于非数字数据非常慢
Pandas read_hdf very slow for non-numeric data
当使用 pandas.read_hdf()
读取大型 hdf 文件时,我的读取时间非常慢。我的 hdf 有 5000 万行,3 列是整数,2 列是字符串。使用 to_hdf()
和 table 格式编写此文件并建立索引花费了将近 10 分钟。虽然这也很慢,但我不太担心,因为读取速度更重要。
我试过保存为fixed/table格式,with/without压缩,但是读取时间在2-5分钟之间。相比之下,read_csv()
处理相同的数据需要 4 分钟。
我也尝试过直接使用 pytables 读取 hdf。这在 6 秒时要快得多,这将是我希望看到的速度。
h5file = tables.open_file("data.h5", "r")
table = h5file.root.data.table.read()
我注意到文档中的所有速度比较都只使用数字数据,运行我自己也取得了类似的性能。
请问有什么办法可以优化读取性能吗?
编辑
这是数据样本
col_A col_B col_C col_D col_E
30649671 1159660800 10217383 0 10596000 LACKEY
26198715 1249084800 0921720 0 0 KEY CLIFTON
19251910 752112000 0827092 104 243000 WEMPLE
47636877 1464739200 06247715 0 0 FLOYD
14121495 1233446400 05133815 0 988000 OGU ALLYN CH 9
41171050 1314835200 7C140009 0 39000 DEBERRY A
45865543 1459468800 0314892 76 254000 SABRINA
13387355 970358400 04140585 19 6956000 LA PERLA
4186815 849398400 02039719 0 19208000 NPU UNIONSPIELHAGAN1
32666568 733622400 10072006 0 1074000 BROWN
以及关于数据框的信息:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 52046850 entries, 0 to 52046849
Data columns (total 5 columns):
col_A int64
col_B object
col_C int64
col_D int64
col_E object
dtypes: int64(3), object(2)
memory usage: 1.9+ GB
这是一个小演示:
正在生成样本 DF(100 万行):
N = 10**6
df = pd.DataFrame({
'n1': np.random.randint(10**6, size=N),
'n2': np.random.randint(10**6, size=N),
'n3': np.random.randint(10**6, size=N),
's1': pd.util.testing.rands_array(10, size=N),
's2': pd.util.testing.rands_array(40, size=N),
})
让我们以 CSV、HDF5(固定,table 和 table + data_columns=True
)和 Feather 格式将其写入磁盘
df.to_csv(r'c:/tmp/test.csv', index=False)
df.to_hdf(r'c:/tmp/test_fix.h5', 'a')
df.to_hdf(r'c:/tmp/test_tab.h5', 'a', format='t')
df.to_hdf(r'c:/tmp/test_tab_idx.h5', 'a', format='t', data_columns=True)
import feather
feather.write_dataframe(df, 'c:/tmp/test.feather')
阅读中:
In [2]: %timeit pd.read_csv(r'c:/tmp/test.csv')
1 loop, best of 3: 4.48 s per loop
In [3]: %timeit pd.read_hdf(r'c:/tmp/test_fix.h5','a')
1 loop, best of 3: 1.24 s per loop
In [4]: %timeit pd.read_hdf(r'c:/tmp/test_tab.h5','a')
1 loop, best of 3: 5.65 s per loop
In [5]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a')
1 loop, best of 3: 5.6 s per loop
In [6]: %timeit feather.read_dataframe(r'c:/tmp/test.feather')
1 loop, best of 3: 589 ms per loop
有条件的阅读 - 让我们 select 只有 n2 <= 100000
的那些行
In [7]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a', where="n2 <= 100000")
1 loop, best of 3: 1.18 s per loop
我们需要的数据越少select(过滤后)- 速度越快:
In [8]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a', where="n2 <= 100000 and n1 > 500000")
1 loop, best of 3: 763 ms per loop
In [10]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a', where="n2 <= 100000 and n1 > 500000 and n3 < 50000")
1 loop, best of 3: 379 ms per loop
更新: for Pandas versions 0.20.0+ 我们可以直接读写 to/from 羽化格式(感谢 ) :
In [3]: df.to_feather(r'c:/tmp/test2.feather')
In [4]: %timeit pd.read_feather(r'c:/tmp/test2.feather')
1 loop, best of 3: 583 ms per loop
生成的 DF 示例:
In [13]: df
Out[13]:
n1 n2 n3 s1 s2
0 719458 808047 792611 Fjv4CoRv2b 2aWQTkutPlKkO38fRQh2tdh1BrnEFavmIsDZK17V
1 526092 950709 804869 dfG12EpzVI YVZzhMi9sfazZEW9e2TV7QIvldYj2RPHw0TXxS2z
2 109107 801344 266732 aoyBuHTL9I ui0PKJO8cQJwcvmMThb08agWL1UyRumYgB7jjmcw
3 873626 814409 895382 qQQms5pTGq zvf4HTaKCISrdPK98ROtqPqpsG4WhSdEgbKNHy05
4 212776 596713 924623 3YXa4PViAn 7Y94ykHIHIEnjKvGphYfAWSINRZtJ99fCPiMrfzl
5 375323 401029 973262 j6QQwYzfsK PNYOM2GpHdhrz9NCCifRsn8gIZkLHecjlk82o44Y
6 232655 937230 40883 NsI5Y78aLT qiKvXcAdPVbhWbXnyD3uqIwzS7ZsCgssm9kHAETb
7 69010 438280 564194 N73tQaZjey ttj1IHtjPyssyADMYiNScflBjN4SFv5bk3tbz93o
8 988081 8992 968871 eb9lc7D22T sb3dt1Ndc8CUHyvsFJgWRrQg4ula7KJ76KrSSqGH
9 127155 66042 881861 tHSBB3RsNH ZpZt5sxAU3zfiPniSzuJYrwtrytDvqJ1WflJ4vh3
... ... ... ... ... ...
999990 805220 21746 355944 IMCMWuf97L bj7tSrgudA5wLvWkWVQyNVamSGmFGOeQlIUoKXK3
999991 232596 293850 741881 JD0SVS5uob kWeP8DEw19rwxVN3XBBcskibMRGxfoToNO9RDeCT
999992 532752 733958 222003 9X4PopnltN dKhsdKFK1EfAATBFsB5hjKZzQWERxzxGEQZWAvSe
999993 308623 717897 703895 Fg0nuq63hA kHzRecZoaG5tAnLbtlq1hqtfd2l5oEMFbJp4NjhC
999994 841670 528518 70745 vKQDiAzZNf M5wdoUNfkdKX2VKQEArvBLYl5lnTNShjDLwnb8VE
999995 986988 599807 901853 r8iHjo39NH 72CfzCycAGoYMocbw3EbUbrV4LRowFjSDoDeYfT5
999996 384064 429184 203230 EJy0mTAmdQ 1jfUQCj2SLIktVqIRHfYQW2QYfpvhcWCbRLO5wqL
999997 967270 565677 146418 KWp2nH1MbM hzhn880cuEpjFhd5bd7vpgsjjRNgaViANW9FHwrf
999998 130864 863893 5614 L28QGa22f1 zfg8mBidk8NTa3LKO4rg31Z6K4ljK50q5tHHq8Fh
999999 528532 276698 553870 0XRJwqBAWX 0EzNcDkGUFklcbKELtcr36zPCMu9lSaIDcmm0kUX
[1000000 rows x 5 columns]
当使用 pandas.read_hdf()
读取大型 hdf 文件时,我的读取时间非常慢。我的 hdf 有 5000 万行,3 列是整数,2 列是字符串。使用 to_hdf()
和 table 格式编写此文件并建立索引花费了将近 10 分钟。虽然这也很慢,但我不太担心,因为读取速度更重要。
我试过保存为fixed/table格式,with/without压缩,但是读取时间在2-5分钟之间。相比之下,read_csv()
处理相同的数据需要 4 分钟。
我也尝试过直接使用 pytables 读取 hdf。这在 6 秒时要快得多,这将是我希望看到的速度。
h5file = tables.open_file("data.h5", "r")
table = h5file.root.data.table.read()
我注意到文档中的所有速度比较都只使用数字数据,运行我自己也取得了类似的性能。
请问有什么办法可以优化读取性能吗?
编辑
这是数据样本
col_A col_B col_C col_D col_E
30649671 1159660800 10217383 0 10596000 LACKEY
26198715 1249084800 0921720 0 0 KEY CLIFTON
19251910 752112000 0827092 104 243000 WEMPLE
47636877 1464739200 06247715 0 0 FLOYD
14121495 1233446400 05133815 0 988000 OGU ALLYN CH 9
41171050 1314835200 7C140009 0 39000 DEBERRY A
45865543 1459468800 0314892 76 254000 SABRINA
13387355 970358400 04140585 19 6956000 LA PERLA
4186815 849398400 02039719 0 19208000 NPU UNIONSPIELHAGAN1
32666568 733622400 10072006 0 1074000 BROWN
以及关于数据框的信息:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 52046850 entries, 0 to 52046849
Data columns (total 5 columns):
col_A int64
col_B object
col_C int64
col_D int64
col_E object
dtypes: int64(3), object(2)
memory usage: 1.9+ GB
这是一个小演示:
正在生成样本 DF(100 万行):
N = 10**6
df = pd.DataFrame({
'n1': np.random.randint(10**6, size=N),
'n2': np.random.randint(10**6, size=N),
'n3': np.random.randint(10**6, size=N),
's1': pd.util.testing.rands_array(10, size=N),
's2': pd.util.testing.rands_array(40, size=N),
})
让我们以 CSV、HDF5(固定,table 和 table + data_columns=True
)和 Feather 格式将其写入磁盘
df.to_csv(r'c:/tmp/test.csv', index=False)
df.to_hdf(r'c:/tmp/test_fix.h5', 'a')
df.to_hdf(r'c:/tmp/test_tab.h5', 'a', format='t')
df.to_hdf(r'c:/tmp/test_tab_idx.h5', 'a', format='t', data_columns=True)
import feather
feather.write_dataframe(df, 'c:/tmp/test.feather')
阅读中:
In [2]: %timeit pd.read_csv(r'c:/tmp/test.csv')
1 loop, best of 3: 4.48 s per loop
In [3]: %timeit pd.read_hdf(r'c:/tmp/test_fix.h5','a')
1 loop, best of 3: 1.24 s per loop
In [4]: %timeit pd.read_hdf(r'c:/tmp/test_tab.h5','a')
1 loop, best of 3: 5.65 s per loop
In [5]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a')
1 loop, best of 3: 5.6 s per loop
In [6]: %timeit feather.read_dataframe(r'c:/tmp/test.feather')
1 loop, best of 3: 589 ms per loop
有条件的阅读 - 让我们 select 只有 n2 <= 100000
In [7]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a', where="n2 <= 100000")
1 loop, best of 3: 1.18 s per loop
我们需要的数据越少select(过滤后)- 速度越快:
In [8]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a', where="n2 <= 100000 and n1 > 500000")
1 loop, best of 3: 763 ms per loop
In [10]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a', where="n2 <= 100000 and n1 > 500000 and n3 < 50000")
1 loop, best of 3: 379 ms per loop
更新: for Pandas versions 0.20.0+ 我们可以直接读写 to/from 羽化格式(感谢
In [3]: df.to_feather(r'c:/tmp/test2.feather')
In [4]: %timeit pd.read_feather(r'c:/tmp/test2.feather')
1 loop, best of 3: 583 ms per loop
生成的 DF 示例:
In [13]: df
Out[13]:
n1 n2 n3 s1 s2
0 719458 808047 792611 Fjv4CoRv2b 2aWQTkutPlKkO38fRQh2tdh1BrnEFavmIsDZK17V
1 526092 950709 804869 dfG12EpzVI YVZzhMi9sfazZEW9e2TV7QIvldYj2RPHw0TXxS2z
2 109107 801344 266732 aoyBuHTL9I ui0PKJO8cQJwcvmMThb08agWL1UyRumYgB7jjmcw
3 873626 814409 895382 qQQms5pTGq zvf4HTaKCISrdPK98ROtqPqpsG4WhSdEgbKNHy05
4 212776 596713 924623 3YXa4PViAn 7Y94ykHIHIEnjKvGphYfAWSINRZtJ99fCPiMrfzl
5 375323 401029 973262 j6QQwYzfsK PNYOM2GpHdhrz9NCCifRsn8gIZkLHecjlk82o44Y
6 232655 937230 40883 NsI5Y78aLT qiKvXcAdPVbhWbXnyD3uqIwzS7ZsCgssm9kHAETb
7 69010 438280 564194 N73tQaZjey ttj1IHtjPyssyADMYiNScflBjN4SFv5bk3tbz93o
8 988081 8992 968871 eb9lc7D22T sb3dt1Ndc8CUHyvsFJgWRrQg4ula7KJ76KrSSqGH
9 127155 66042 881861 tHSBB3RsNH ZpZt5sxAU3zfiPniSzuJYrwtrytDvqJ1WflJ4vh3
... ... ... ... ... ...
999990 805220 21746 355944 IMCMWuf97L bj7tSrgudA5wLvWkWVQyNVamSGmFGOeQlIUoKXK3
999991 232596 293850 741881 JD0SVS5uob kWeP8DEw19rwxVN3XBBcskibMRGxfoToNO9RDeCT
999992 532752 733958 222003 9X4PopnltN dKhsdKFK1EfAATBFsB5hjKZzQWERxzxGEQZWAvSe
999993 308623 717897 703895 Fg0nuq63hA kHzRecZoaG5tAnLbtlq1hqtfd2l5oEMFbJp4NjhC
999994 841670 528518 70745 vKQDiAzZNf M5wdoUNfkdKX2VKQEArvBLYl5lnTNShjDLwnb8VE
999995 986988 599807 901853 r8iHjo39NH 72CfzCycAGoYMocbw3EbUbrV4LRowFjSDoDeYfT5
999996 384064 429184 203230 EJy0mTAmdQ 1jfUQCj2SLIktVqIRHfYQW2QYfpvhcWCbRLO5wqL
999997 967270 565677 146418 KWp2nH1MbM hzhn880cuEpjFhd5bd7vpgsjjRNgaViANW9FHwrf
999998 130864 863893 5614 L28QGa22f1 zfg8mBidk8NTa3LKO4rg31Z6K4ljK50q5tHHq8Fh
999999 528532 276698 553870 0XRJwqBAWX 0EzNcDkGUFklcbKELtcr36zPCMu9lSaIDcmm0kUX
[1000000 rows x 5 columns]