机器学习,将训练模型应用于测试
Machine learning, applying training model to testing
政治学研究生,远超他的头脑(雄心勃勃,但正如他们所说的那样是垃圾)。基本上,出于政治学目的,我正在尝试对一组政客进行吸引力预测。我关注了这个 guide.
提取地标并生成特征后,我使用我的学习集(CFD,400 张带评级的图像)模型预测评级,通过交叉验证将 0.49(对我的目的来说足够好)与实际评级相关联。这是代码:
import numpy as np
from sklearn import decomposition
from sklearn import linear_model
features = np.loadtxt('C:\Users\bruker\Desktop\Data\CFD_features.txt', delimiter=',')
ratings = np.loadtxt('C:\Users\bruker\Desktop\Data\CFD_ratings.txt', delimiter=',')
predictions = np.zeros(ratings.size);
for i in range(0, 400):
features_train = np.delete(features, i, 0)
features_test = features[i, :]
ratings_train = np.delete(ratings, i, 0)
ratings_test = ratings[i]
pca = decomposition.PCA(n_components=13)
pca.fit(features_train)
features_train = pca.transform(features_train)
features_test = pca.transform(features_test)
regr = linear_model.LinearRegression()
regr.fit(features_train, ratings_train)
predictions[i] = regr.predict(features_test)
print 'number of models trained:', i+1
np.savetxt('C:\Users\bruker\Desktop\Data\CFDN_cross_valid_predictions.txt', predictions, delimiter=',', fmt = '%.04f')
corr = np.corrcoef(predictions, ratings)[0, 1]
print corr
现在我有另一个 features.txt,其中包含政客的特征数据(142 张图像),我没有对其进行评级。我想做的是使用由上述代码构建的训练 set/model 为我的政客生成预测的吸引力评级,但我完全不知道如何进行。该指南对此保持沉默,可能是因为它适用于了解 Python :) 的人。我花了很多时间试图找出 modify/build 这段代码的方法来实现它,但我缺乏 Python/general 编码知识,所以很难弄清楚。
鉴于此站点上的大量脑力和知识,我希望有人知道解决方案并可以帮助我。为我的无能深表歉意,在此先感谢您的帮助。
没有 for 循环,它变得非常简单。
import numpy as np
from sklearn import decomposition
from sklearn import linear_model
features_train = np.loadtxt('C:\Users\bruker\Desktop\Data\CFD_features.txt', delimiter=',')
ratings_train = np.loadtxt('C:\Users\bruker\Desktop\Data\CFD_ratings.txt', delimiter=',')
pca = decomposition.PCA(n_components=13)
pca.fit(features_train)
features_train = pca.transform(features_train)
regr = linear_model.LinearRegression()
regr.fit(features_train, ratings_train)
features_test = np.loadtxt('C:\Users\bruker\Desktop\Data\CFD_features_Test.txt', delimiter=',')
features_test = pca.transform(features_test)
predictions = regr.predict(features_test)
政治学研究生,远超他的头脑(雄心勃勃,但正如他们所说的那样是垃圾)。基本上,出于政治学目的,我正在尝试对一组政客进行吸引力预测。我关注了这个 guide.
提取地标并生成特征后,我使用我的学习集(CFD,400 张带评级的图像)模型预测评级,通过交叉验证将 0.49(对我的目的来说足够好)与实际评级相关联。这是代码:
import numpy as np
from sklearn import decomposition
from sklearn import linear_model
features = np.loadtxt('C:\Users\bruker\Desktop\Data\CFD_features.txt', delimiter=',')
ratings = np.loadtxt('C:\Users\bruker\Desktop\Data\CFD_ratings.txt', delimiter=',')
predictions = np.zeros(ratings.size);
for i in range(0, 400):
features_train = np.delete(features, i, 0)
features_test = features[i, :]
ratings_train = np.delete(ratings, i, 0)
ratings_test = ratings[i]
pca = decomposition.PCA(n_components=13)
pca.fit(features_train)
features_train = pca.transform(features_train)
features_test = pca.transform(features_test)
regr = linear_model.LinearRegression()
regr.fit(features_train, ratings_train)
predictions[i] = regr.predict(features_test)
print 'number of models trained:', i+1
np.savetxt('C:\Users\bruker\Desktop\Data\CFDN_cross_valid_predictions.txt', predictions, delimiter=',', fmt = '%.04f')
corr = np.corrcoef(predictions, ratings)[0, 1]
print corr
现在我有另一个 features.txt,其中包含政客的特征数据(142 张图像),我没有对其进行评级。我想做的是使用由上述代码构建的训练 set/model 为我的政客生成预测的吸引力评级,但我完全不知道如何进行。该指南对此保持沉默,可能是因为它适用于了解 Python :) 的人。我花了很多时间试图找出 modify/build 这段代码的方法来实现它,但我缺乏 Python/general 编码知识,所以很难弄清楚。
鉴于此站点上的大量脑力和知识,我希望有人知道解决方案并可以帮助我。为我的无能深表歉意,在此先感谢您的帮助。
没有 for 循环,它变得非常简单。
import numpy as np
from sklearn import decomposition
from sklearn import linear_model
features_train = np.loadtxt('C:\Users\bruker\Desktop\Data\CFD_features.txt', delimiter=',')
ratings_train = np.loadtxt('C:\Users\bruker\Desktop\Data\CFD_ratings.txt', delimiter=',')
pca = decomposition.PCA(n_components=13)
pca.fit(features_train)
features_train = pca.transform(features_train)
regr = linear_model.LinearRegression()
regr.fit(features_train, ratings_train)
features_test = np.loadtxt('C:\Users\bruker\Desktop\Data\CFD_features_Test.txt', delimiter=',')
features_test = pca.transform(features_test)
predictions = regr.predict(features_test)