Boost:仅解析先前声明的变量
Boost: parsing only variables that were previously declared
我使用来自网络上各种来源的 boost 库拼凑了一个解析器。它有效(虽然不像我希望的那样干净)但是我 运行 遇到了一个特定的问题。在解析器的第一部分,我首先解析函数名,然后是括号中的一组参数。稍后,在解析实际表达式时,在解析 factor
中,我允许解析数字和变量。但是,我只想解析那些先前在 vars
解析器中声明的变量。这是我的语法:
template<typename Iterator>
struct exp_parser : qi::grammar<Iterator, expression(), ascii::space_type>
{
exp_parser() : exp_parser::base_type(all)
{
using qi::_val;
using qi::_1;
using qi::char_;
using qi::double_;
using qi::lit;
using phoenix::at_c;
using phoenix::push_back;
using phoenix::bind;
all =
name [at_c<0>(_val) = _1] >> '(' >> vars [at_c<1>(_val) = _1] >> ')' >> '='
>> expr [at_c<2>(_val) = _1];
// Parsing of actual expression
expr =
term [_val = _1]
>> *( ('+' >> term [_val += _1])
| ('-' >> term [_val -= _1])
);
term =
factor [_val = _1]
>> *( ('*' >> factor [_val *= _1])
| ('/' >> factor [_val /= _1])
);
factor =
simple [_val = _1]
| '(' >> expr [_val = _1] >> ')'
| ('-' >> factor [_val = bind(make_unary, UN_OP::MIN, _1)])
| ("sin" >> factor [_val = bind(make_unary, UN_OP::SIN, _1)])
| ("cos" >> factor [_val = bind(make_unary, UN_OP::COS, _1)])
| ("tan" >> factor [_val = bind(make_unary, UN_OP::TAN, _1)])
| ('+' >> factor [_val = _1]);
// Prototyping of expression
prtctd %= lit("sin") | lit("cos") | lit("tan");
var %= !prtctd >> char_('a','z');
num %= double_;
simple %= var | num | ('(' >> expr >> ')');
name %= ((char_('a','z') | char_('A','Z') ) >> *(char_('a','z') | char_('A','Z') | char_('0','9') ));
vars %= (char_('a','z') >> *(',' >> char_('a','z')));
}
qi::rule<Iterator, ast(), ascii::space_type> expr, term, factor, simple;
qi::rule<Iterator, expression(), ascii::space_type> all;
qi::rule<Iterator, std::string(), ascii::space_type> name, prtctd;
qi::rule<Iterator, std::vector<char>(), ascii::space_type> vars;
qi::rule<Iterator, char(), ascii::space_type> var;
qi::rule<Iterator, double(), ascii::space_type> num;
};
这是我用来存储所有内容的结构:
struct expression {
std::string name;
std::vector<char> arguments;
ast syntax_tree;
};
现在,我如何访问 factor
解析器中的 std::vector<char>
以便我只解析正确的变量。
此外,我还不熟悉使用 boost 并将其用作自己的练习以开始学习一些知识。如果有人有任何建议,请告诉我如何清理这段代码。
提前致谢!
这是 Spirit 中的一个大反模式:
all =
name [at_c<0>(_val) = _1] >> '(' >> vars [at_c<1>(_val) = _1] >> ')' >> '='
>> expr [at_c<2>(_val) = _1];
事实上,我相信您一直在查看的示例显示了更好的方法。另外,我注意到您从相互冲突的方法中选择了代码(当语义操作动态评估表达式值时,您无法合成语法树)。
首先,摆脱语义动作思维:Boost Spirit: "Semantic actions are evil"?
BOOST_FUSION_ADAPT_STRUCT(expression, name, arguments, syntax_tree)
all = name >> '(' >> vars >> ')' >> '=' >> expr;
还有很多其他的"sicknesses":
prtctd
应该是一个词素,所以 si\nn
不匹配
*(char_('a','z') | char_('A','Z') | char_('0','9') )
就是 *alnum
name 也应该是一个词素,所以简单
name = alpha >> *alnum;
vars
甚至 use var
?
总而言之,这是这些规则的简化(假设您从 prtctd
和 name
中删除了船长):
prtctd = lit("sin") | "cos" | "tan";
var = !prtctd >> ascii::lower;
num = double_;
simple = var | num | '(' >> expr >> ')';
name = ascii::alpha >> *ascii::alnum;
vars = var % ',';
一个独立的例子
让我们在上面添加一些模拟部分,并有一些我们可以测试的东西:
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/fusion/adapted.hpp>
namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;
namespace phoenix = boost::phoenix;
struct ast {
template <typename T> ast& operator+=(T&&) { return *this; }
template <typename T> ast& operator*=(T&&) { return *this; }
template <typename T> ast& operator/=(T&&) { return *this; }
template <typename T> ast& operator-=(T&&) { return *this; }
ast() = default;
template <typename T> ast(T&&) { }
template <typename T> ast& operator =(T&&) { return *this; }
friend std::ostream& operator<<(std::ostream& os, ast) { return os << "syntax_tree"; }
};
struct expression {
std::string name;
std::vector<std::string> arguments;
ast syntax_tree;
friend std::ostream& operator<<(std::ostream& os, expression const& e) {
os << e.name << "(";
for (auto arg : e.arguments) os << arg << ", ";
return os << ") = " << e.syntax_tree;
}
};
BOOST_FUSION_ADAPT_STRUCT(expression, name, arguments, syntax_tree)
enum UN_OP { MIN, SIN, COS, TAN };
struct make_unary_f {
template <typename... Ts> qi::unused_type operator()(Ts&&...) const { return qi::unused; }
} static const make_unary = {};
template<typename Iterator>
struct exp_parser : qi::grammar<Iterator, expression(), ascii::space_type>
{
exp_parser() : exp_parser::base_type(all)
{
using qi::_val;
using qi::_1;
using qi::char_;
using qi::double_;
using qi::lit;
using phoenix::at_c;
using phoenix::push_back;
using phoenix::bind;
all = name >> '(' >> vars >> ')' >> '=' >> expr;
// Parsing of actual expression
expr =
term [_val = _1]
>> *( ('+' >> term [_val += _1])
| ('-' >> term [_val -= _1])
);
term =
factor [_val = _1]
>> *( ('*' >> factor [_val *= _1])
| ('/' >> factor [_val /= _1])
);
factor =
simple [_val = _1]
| '(' >> expr [_val = _1] >> ')'
| ('-' >> factor [_val = bind(make_unary, UN_OP::MIN, _1)])
| ("sin" >> factor [_val = bind(make_unary, UN_OP::SIN, _1)])
| ("cos" >> factor [_val = bind(make_unary, UN_OP::COS, _1)])
| ("tan" >> factor [_val = bind(make_unary, UN_OP::TAN, _1)])
| ('+' >> factor [_val = _1]);
// Prototyping of expression
prtctd = lit("sin") | "cos" | "tan";
var = !prtctd >> ascii::lower;
num = double_;
simple = var | num | '(' >> expr >> ')';
name = ascii::alpha >> *ascii::alnum;
vars = var % ',';
}
private:
qi::rule<Iterator, ast(), ascii::space_type> expr, term, factor, simple;
qi::rule<Iterator, expression(), ascii::space_type> all;
qi::rule<Iterator, std::vector<std::string>(), ascii::space_type> vars;
// lexemes
qi::rule<Iterator, std::string()> name, prtctd;
qi::rule<Iterator, std::string()> var;
qi::rule<Iterator, double()> num;
};
int main() {
for (std::string const& input : {
"",
"foo (a) = 3*8+a",
"bar (x, y) = (sin(x) + y*y) / (x + y)",
"oops (x, y) = (sin(x) + y*y) / (x + a)",
})
try {
using It = std::string::const_iterator;
It f = input.begin(), l = input.end();
expression e;
bool ok = qi::phrase_parse(f, l, exp_parser<It>{} >> qi::eoi, ascii::space, e);
if (ok) {
std::cout << "Parse success: '" << input << "' -> " << e << "\n";
} else {
std::cout << "Parse failed: '" << input << "'\n";
}
if (f != l)
std::cout << "Remaining unparsed: '" << std::string(f,l) << "'\n";
} catch(std::exception const& e) {
std::cout << "Exception: '" << e.what() << "'\n";
}
}
正如预期的那样,它仍然解析所有非空行,包括错误使用 a
而不是 y
:
的 oops
Parse failed: ''
Parse success: 'foo (a) = 3*8+a' -> foo(a, ) = syntax_tree
Parse success: 'bar (x, y) = (sin(x) + y*y) / (x + y)' -> bar(x, y, ) = syntax_tree
Parse success: 'oops (x, y) = (sin(x) + y*y) / (x + a)' -> oops(x, y, ) = syntax_tree
声明和检查
为了匹配声明的变量,我会 use qi::symbols<>
:
qi::symbols<char> _declared;
simple = _declared | num | '(' >> expr >> ')';
现在,要添加已声明的项目,我们将设计一个 Phoenix 函数,
struct add_declaration_f {
add_declaration_f(qi::symbols<char>& ref) : _p(std::addressof(ref)) {}
qi::symbols<char>* _p;
void operator()(std::string const& arg) const { _p->add(arg); }
};
phoenix::function<add_declaration_f> _declare { _declared };
并使用它:
vars %= var [ _declare(_1) ] % ',';
集成演示
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/fusion/adapted.hpp>
namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;
namespace phoenix = boost::phoenix;
struct ast {
template <typename T> ast& operator+=(T&&) { return *this; }
template <typename T> ast& operator*=(T&&) { return *this; }
template <typename T> ast& operator/=(T&&) { return *this; }
template <typename T> ast& operator-=(T&&) { return *this; }
ast() = default;
template <typename T> ast(T&&) { }
template <typename T> ast& operator =(T&&) { return *this; }
friend std::ostream& operator<<(std::ostream& os, ast) { return os << "syntax_tree"; }
};
struct expression {
std::string name;
std::vector<std::string> arguments;
ast syntax_tree;
friend std::ostream& operator<<(std::ostream& os, expression const& e) {
os << e.name << "(";
for (auto arg : e.arguments) os << arg << ", ";
return os << ") = " << e.syntax_tree;
}
};
BOOST_FUSION_ADAPT_STRUCT(expression, name, arguments, syntax_tree)
enum UN_OP { MIN, SIN, COS, TAN };
struct make_unary_f {
template <typename... Ts> qi::unused_type operator()(Ts&&...) const { return qi::unused; }
} static const make_unary = {};
template<typename Iterator>
struct exp_parser : qi::grammar<Iterator, expression(), ascii::space_type>
{
exp_parser() : exp_parser::base_type(all)
{
using qi::_val;
using qi::_1;
using qi::char_;
using qi::double_;
using qi::lit;
using phoenix::at_c;
using phoenix::push_back;
using phoenix::bind;
all = name >> '(' >> vars >> ')' >> '=' >> expr;
// Parsing of actual expression
expr =
term [_val = _1]
>> *( ('+' >> term [_val += _1])
| ('-' >> term [_val -= _1])
);
term =
factor [_val = _1]
>> *( ('*' >> factor [_val *= _1])
| ('/' >> factor [_val /= _1])
);
factor =
simple [_val = _1]
| '(' >> expr [_val = _1] >> ')'
| ('-' >> factor [_val = bind(make_unary, UN_OP::MIN, _1)])
| ("sin" >> factor [_val = bind(make_unary, UN_OP::SIN, _1)])
| ("cos" >> factor [_val = bind(make_unary, UN_OP::COS, _1)])
| ("tan" >> factor [_val = bind(make_unary, UN_OP::TAN, _1)])
| ('+' >> factor [_val = _1]);
// Prototyping of expression
prtctd = lit("sin") | "cos" | "tan";
var = !prtctd >> ascii::lower;
num = double_;
simple = _declared | num | '(' >> expr >> ')';
name = ascii::alpha >> *ascii::alnum;
vars %= var [ _declare(_1) ] % ',';
}
private:
qi::symbols<char> _declared;
struct add_declaration_f {
add_declaration_f(qi::symbols<char>& ref) : _p(std::addressof(ref)) {}
qi::symbols<char>* _p;
void operator()(std::string const& arg) const { _p->add(arg); }
};
phoenix::function<add_declaration_f> _declare { _declared };
qi::rule<Iterator, ast(), ascii::space_type> expr, term, factor, simple;
qi::rule<Iterator, expression(), ascii::space_type> all;
qi::rule<Iterator, std::vector<std::string>(), ascii::space_type> vars;
// lexemes
qi::rule<Iterator, std::string()> name, prtctd;
qi::rule<Iterator, std::string()> var;
qi::rule<Iterator, double()> num;
};
int main() {
for (std::string const& input : {
"",
"foo (a) = 3*8+a",
"bar (x, y) = (sin(x) + y*y) / (x + y)",
"oops (x, y) = (sin(x) + y*y) / (x + a)",
})
try {
using It = std::string::const_iterator;
It f = input.begin(), l = input.end();
expression e;
bool ok = qi::phrase_parse(f, l, exp_parser<It>{}, ascii::space, e);
if (ok) {
std::cout << "Parse success: '" << input << "' -> " << e << "\n";
} else {
std::cout << "Parse failed: '" << input << "'\n";
}
if (f != l)
std::cout << "Remaining unparsed: '" << std::string(f,l) << "'\n";
} catch(std::exception const& e) {
std::cout << "Exception: '" << e.what() << "'\n";
}
}
打印:
Parse failed: ''
Parse success: 'foo (a) = 3*8+a' -> foo(a, ) = syntax_tree
Parse success: 'bar (x, y) = (sin(x) + y*y) / (x + y)' -> bar(x, y, ) = syntax_tree
Parse success: 'oops (x, y) = (sin(x) + y*y) / (x + a)' -> oops(x, y, ) = syntax_tree
Remaining unparsed: '/ (x + a)'
将>> qi::eoi
添加到我们得到的解析器表达式:Live On Coliru
Parse failed: ''
Parse success: 'foo (a) = 3*8+a' -> foo(a, ) = syntax_tree
Parse success: 'bar (x, y) = (sin(x) + y*y) / (x + y)' -> bar(x, y, ) = syntax_tree
Parse failed: 'oops (x, y) = (sin(x) + y*y) / (x + a)'
Remaining unparsed: 'oops (x, y) = (sin(x) + y*y) / (x + a)'
我使用来自网络上各种来源的 boost 库拼凑了一个解析器。它有效(虽然不像我希望的那样干净)但是我 运行 遇到了一个特定的问题。在解析器的第一部分,我首先解析函数名,然后是括号中的一组参数。稍后,在解析实际表达式时,在解析 factor
中,我允许解析数字和变量。但是,我只想解析那些先前在 vars
解析器中声明的变量。这是我的语法:
template<typename Iterator>
struct exp_parser : qi::grammar<Iterator, expression(), ascii::space_type>
{
exp_parser() : exp_parser::base_type(all)
{
using qi::_val;
using qi::_1;
using qi::char_;
using qi::double_;
using qi::lit;
using phoenix::at_c;
using phoenix::push_back;
using phoenix::bind;
all =
name [at_c<0>(_val) = _1] >> '(' >> vars [at_c<1>(_val) = _1] >> ')' >> '='
>> expr [at_c<2>(_val) = _1];
// Parsing of actual expression
expr =
term [_val = _1]
>> *( ('+' >> term [_val += _1])
| ('-' >> term [_val -= _1])
);
term =
factor [_val = _1]
>> *( ('*' >> factor [_val *= _1])
| ('/' >> factor [_val /= _1])
);
factor =
simple [_val = _1]
| '(' >> expr [_val = _1] >> ')'
| ('-' >> factor [_val = bind(make_unary, UN_OP::MIN, _1)])
| ("sin" >> factor [_val = bind(make_unary, UN_OP::SIN, _1)])
| ("cos" >> factor [_val = bind(make_unary, UN_OP::COS, _1)])
| ("tan" >> factor [_val = bind(make_unary, UN_OP::TAN, _1)])
| ('+' >> factor [_val = _1]);
// Prototyping of expression
prtctd %= lit("sin") | lit("cos") | lit("tan");
var %= !prtctd >> char_('a','z');
num %= double_;
simple %= var | num | ('(' >> expr >> ')');
name %= ((char_('a','z') | char_('A','Z') ) >> *(char_('a','z') | char_('A','Z') | char_('0','9') ));
vars %= (char_('a','z') >> *(',' >> char_('a','z')));
}
qi::rule<Iterator, ast(), ascii::space_type> expr, term, factor, simple;
qi::rule<Iterator, expression(), ascii::space_type> all;
qi::rule<Iterator, std::string(), ascii::space_type> name, prtctd;
qi::rule<Iterator, std::vector<char>(), ascii::space_type> vars;
qi::rule<Iterator, char(), ascii::space_type> var;
qi::rule<Iterator, double(), ascii::space_type> num;
};
这是我用来存储所有内容的结构:
struct expression {
std::string name;
std::vector<char> arguments;
ast syntax_tree;
};
现在,我如何访问 factor
解析器中的 std::vector<char>
以便我只解析正确的变量。
此外,我还不熟悉使用 boost 并将其用作自己的练习以开始学习一些知识。如果有人有任何建议,请告诉我如何清理这段代码。
提前致谢!
这是 Spirit 中的一个大反模式:
all =
name [at_c<0>(_val) = _1] >> '(' >> vars [at_c<1>(_val) = _1] >> ')' >> '='
>> expr [at_c<2>(_val) = _1];
事实上,我相信您一直在查看的示例显示了更好的方法。另外,我注意到您从相互冲突的方法中选择了代码(当语义操作动态评估表达式值时,您无法合成语法树)。
首先,摆脱语义动作思维:Boost Spirit: "Semantic actions are evil"?
BOOST_FUSION_ADAPT_STRUCT(expression, name, arguments, syntax_tree)
all = name >> '(' >> vars >> ')' >> '=' >> expr;
还有很多其他的"sicknesses":
prtctd
应该是一个词素,所以si\nn
不匹配*(char_('a','z') | char_('A','Z') | char_('0','9') )
就是*alnum
name 也应该是一个词素,所以简单
name = alpha >> *alnum;
vars
甚至 usevar
?
总而言之,这是这些规则的简化(假设您从 prtctd
和 name
中删除了船长):
prtctd = lit("sin") | "cos" | "tan";
var = !prtctd >> ascii::lower;
num = double_;
simple = var | num | '(' >> expr >> ')';
name = ascii::alpha >> *ascii::alnum;
vars = var % ',';
一个独立的例子
让我们在上面添加一些模拟部分,并有一些我们可以测试的东西:
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/fusion/adapted.hpp>
namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;
namespace phoenix = boost::phoenix;
struct ast {
template <typename T> ast& operator+=(T&&) { return *this; }
template <typename T> ast& operator*=(T&&) { return *this; }
template <typename T> ast& operator/=(T&&) { return *this; }
template <typename T> ast& operator-=(T&&) { return *this; }
ast() = default;
template <typename T> ast(T&&) { }
template <typename T> ast& operator =(T&&) { return *this; }
friend std::ostream& operator<<(std::ostream& os, ast) { return os << "syntax_tree"; }
};
struct expression {
std::string name;
std::vector<std::string> arguments;
ast syntax_tree;
friend std::ostream& operator<<(std::ostream& os, expression const& e) {
os << e.name << "(";
for (auto arg : e.arguments) os << arg << ", ";
return os << ") = " << e.syntax_tree;
}
};
BOOST_FUSION_ADAPT_STRUCT(expression, name, arguments, syntax_tree)
enum UN_OP { MIN, SIN, COS, TAN };
struct make_unary_f {
template <typename... Ts> qi::unused_type operator()(Ts&&...) const { return qi::unused; }
} static const make_unary = {};
template<typename Iterator>
struct exp_parser : qi::grammar<Iterator, expression(), ascii::space_type>
{
exp_parser() : exp_parser::base_type(all)
{
using qi::_val;
using qi::_1;
using qi::char_;
using qi::double_;
using qi::lit;
using phoenix::at_c;
using phoenix::push_back;
using phoenix::bind;
all = name >> '(' >> vars >> ')' >> '=' >> expr;
// Parsing of actual expression
expr =
term [_val = _1]
>> *( ('+' >> term [_val += _1])
| ('-' >> term [_val -= _1])
);
term =
factor [_val = _1]
>> *( ('*' >> factor [_val *= _1])
| ('/' >> factor [_val /= _1])
);
factor =
simple [_val = _1]
| '(' >> expr [_val = _1] >> ')'
| ('-' >> factor [_val = bind(make_unary, UN_OP::MIN, _1)])
| ("sin" >> factor [_val = bind(make_unary, UN_OP::SIN, _1)])
| ("cos" >> factor [_val = bind(make_unary, UN_OP::COS, _1)])
| ("tan" >> factor [_val = bind(make_unary, UN_OP::TAN, _1)])
| ('+' >> factor [_val = _1]);
// Prototyping of expression
prtctd = lit("sin") | "cos" | "tan";
var = !prtctd >> ascii::lower;
num = double_;
simple = var | num | '(' >> expr >> ')';
name = ascii::alpha >> *ascii::alnum;
vars = var % ',';
}
private:
qi::rule<Iterator, ast(), ascii::space_type> expr, term, factor, simple;
qi::rule<Iterator, expression(), ascii::space_type> all;
qi::rule<Iterator, std::vector<std::string>(), ascii::space_type> vars;
// lexemes
qi::rule<Iterator, std::string()> name, prtctd;
qi::rule<Iterator, std::string()> var;
qi::rule<Iterator, double()> num;
};
int main() {
for (std::string const& input : {
"",
"foo (a) = 3*8+a",
"bar (x, y) = (sin(x) + y*y) / (x + y)",
"oops (x, y) = (sin(x) + y*y) / (x + a)",
})
try {
using It = std::string::const_iterator;
It f = input.begin(), l = input.end();
expression e;
bool ok = qi::phrase_parse(f, l, exp_parser<It>{} >> qi::eoi, ascii::space, e);
if (ok) {
std::cout << "Parse success: '" << input << "' -> " << e << "\n";
} else {
std::cout << "Parse failed: '" << input << "'\n";
}
if (f != l)
std::cout << "Remaining unparsed: '" << std::string(f,l) << "'\n";
} catch(std::exception const& e) {
std::cout << "Exception: '" << e.what() << "'\n";
}
}
正如预期的那样,它仍然解析所有非空行,包括错误使用 a
而不是 y
:
oops
Parse failed: ''
Parse success: 'foo (a) = 3*8+a' -> foo(a, ) = syntax_tree
Parse success: 'bar (x, y) = (sin(x) + y*y) / (x + y)' -> bar(x, y, ) = syntax_tree
Parse success: 'oops (x, y) = (sin(x) + y*y) / (x + a)' -> oops(x, y, ) = syntax_tree
声明和检查
为了匹配声明的变量,我会 use qi::symbols<>
:
qi::symbols<char> _declared;
simple = _declared | num | '(' >> expr >> ')';
现在,要添加已声明的项目,我们将设计一个 Phoenix 函数,
struct add_declaration_f {
add_declaration_f(qi::symbols<char>& ref) : _p(std::addressof(ref)) {}
qi::symbols<char>* _p;
void operator()(std::string const& arg) const { _p->add(arg); }
};
phoenix::function<add_declaration_f> _declare { _declared };
并使用它:
vars %= var [ _declare(_1) ] % ',';
集成演示
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/fusion/adapted.hpp>
namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;
namespace phoenix = boost::phoenix;
struct ast {
template <typename T> ast& operator+=(T&&) { return *this; }
template <typename T> ast& operator*=(T&&) { return *this; }
template <typename T> ast& operator/=(T&&) { return *this; }
template <typename T> ast& operator-=(T&&) { return *this; }
ast() = default;
template <typename T> ast(T&&) { }
template <typename T> ast& operator =(T&&) { return *this; }
friend std::ostream& operator<<(std::ostream& os, ast) { return os << "syntax_tree"; }
};
struct expression {
std::string name;
std::vector<std::string> arguments;
ast syntax_tree;
friend std::ostream& operator<<(std::ostream& os, expression const& e) {
os << e.name << "(";
for (auto arg : e.arguments) os << arg << ", ";
return os << ") = " << e.syntax_tree;
}
};
BOOST_FUSION_ADAPT_STRUCT(expression, name, arguments, syntax_tree)
enum UN_OP { MIN, SIN, COS, TAN };
struct make_unary_f {
template <typename... Ts> qi::unused_type operator()(Ts&&...) const { return qi::unused; }
} static const make_unary = {};
template<typename Iterator>
struct exp_parser : qi::grammar<Iterator, expression(), ascii::space_type>
{
exp_parser() : exp_parser::base_type(all)
{
using qi::_val;
using qi::_1;
using qi::char_;
using qi::double_;
using qi::lit;
using phoenix::at_c;
using phoenix::push_back;
using phoenix::bind;
all = name >> '(' >> vars >> ')' >> '=' >> expr;
// Parsing of actual expression
expr =
term [_val = _1]
>> *( ('+' >> term [_val += _1])
| ('-' >> term [_val -= _1])
);
term =
factor [_val = _1]
>> *( ('*' >> factor [_val *= _1])
| ('/' >> factor [_val /= _1])
);
factor =
simple [_val = _1]
| '(' >> expr [_val = _1] >> ')'
| ('-' >> factor [_val = bind(make_unary, UN_OP::MIN, _1)])
| ("sin" >> factor [_val = bind(make_unary, UN_OP::SIN, _1)])
| ("cos" >> factor [_val = bind(make_unary, UN_OP::COS, _1)])
| ("tan" >> factor [_val = bind(make_unary, UN_OP::TAN, _1)])
| ('+' >> factor [_val = _1]);
// Prototyping of expression
prtctd = lit("sin") | "cos" | "tan";
var = !prtctd >> ascii::lower;
num = double_;
simple = _declared | num | '(' >> expr >> ')';
name = ascii::alpha >> *ascii::alnum;
vars %= var [ _declare(_1) ] % ',';
}
private:
qi::symbols<char> _declared;
struct add_declaration_f {
add_declaration_f(qi::symbols<char>& ref) : _p(std::addressof(ref)) {}
qi::symbols<char>* _p;
void operator()(std::string const& arg) const { _p->add(arg); }
};
phoenix::function<add_declaration_f> _declare { _declared };
qi::rule<Iterator, ast(), ascii::space_type> expr, term, factor, simple;
qi::rule<Iterator, expression(), ascii::space_type> all;
qi::rule<Iterator, std::vector<std::string>(), ascii::space_type> vars;
// lexemes
qi::rule<Iterator, std::string()> name, prtctd;
qi::rule<Iterator, std::string()> var;
qi::rule<Iterator, double()> num;
};
int main() {
for (std::string const& input : {
"",
"foo (a) = 3*8+a",
"bar (x, y) = (sin(x) + y*y) / (x + y)",
"oops (x, y) = (sin(x) + y*y) / (x + a)",
})
try {
using It = std::string::const_iterator;
It f = input.begin(), l = input.end();
expression e;
bool ok = qi::phrase_parse(f, l, exp_parser<It>{}, ascii::space, e);
if (ok) {
std::cout << "Parse success: '" << input << "' -> " << e << "\n";
} else {
std::cout << "Parse failed: '" << input << "'\n";
}
if (f != l)
std::cout << "Remaining unparsed: '" << std::string(f,l) << "'\n";
} catch(std::exception const& e) {
std::cout << "Exception: '" << e.what() << "'\n";
}
}
打印:
Parse failed: ''
Parse success: 'foo (a) = 3*8+a' -> foo(a, ) = syntax_tree
Parse success: 'bar (x, y) = (sin(x) + y*y) / (x + y)' -> bar(x, y, ) = syntax_tree
Parse success: 'oops (x, y) = (sin(x) + y*y) / (x + a)' -> oops(x, y, ) = syntax_tree
Remaining unparsed: '/ (x + a)'
将>> qi::eoi
添加到我们得到的解析器表达式:Live On Coliru
Parse failed: ''
Parse success: 'foo (a) = 3*8+a' -> foo(a, ) = syntax_tree
Parse success: 'bar (x, y) = (sin(x) + y*y) / (x + y)' -> bar(x, y, ) = syntax_tree
Parse failed: 'oops (x, y) = (sin(x) + y*y) / (x + a)'
Remaining unparsed: 'oops (x, y) = (sin(x) + y*y) / (x + a)'