Why does getInt inside RDD[Row].map give "error: value getInt is not a member of Any"?

Why does getInt inside RDD[Row].map give "error: value getInt is not a member of Any"?

我是 Scala-Spark 的新手,但我需要用它来开发我的最终项目学士学位。

我正在尝试根据数据构建 K 均值算法。 数据来自kaggle:https://www.kaggle.com/murderaccountability/homicide-reports

我读取了包含数据的文件。 创建案例 class,例如:

case class CrimeReport (Record_ID: String, Agency_Name: String, 
City: String, State: String, Year: Int, Month: Int, Crime_Type: String, 
Crime_Solved: String, Victim_Sex: String, Victim_Age: Int, Victim_Race: String, 
Perpetrator_Sex: String, Perpetrator_Age: String, Perpetrator_Race: String, Relationship: String, Victim_Count: String)

我将我的数据映射到案例 class。例如,月份是字符串,我需要 Int(在我的特征向量之后创建)我定义了一个函数来解析它:

    //Parsear Month:    String  ===>    Int
    def parseMonthToNumber(month: String) : Int = {
        var result = 0
        month match {
            case "January" => result = 1
            case "February" => result = 2
            case "March" => result = 3
            case "April" => result = 4
            case "May" => result = 5
            case "June" => result = 6
            case "July" => result = 7
            case "August" => result = 8
            case "September" => result = 9
            case "October" => result = 10
            case "November" => result = 11
            case _ => result = 12
        }
        result
    }

    data = sc.textFile (... .csv)
    val data_split = data.map(line => line.split(","))

    val allData = data_split.map(p => CrimeReport(p(0).toString,
    p(1).toString, p(2).toString, p(3).toString, parseInt(p(4)),
     parseMonthToNumber(p(5)), p(6).toString, p(7).toString, p(8).toString,
     parseInt(p(9)), p(10).toString, p(11).toString, p(12).toString,
     p(13).toString, p(14).toString, p(15).toString))
//DataFrame
val allDF = allData.toDF()

//convert data to RDD which will be passed to KMeans
val rowsRDD = allDF.rdd.map( x => 

                (x(0).getString, x.getString(1), x.getString(2), x.getString(3), x(4).getInt, x(5).getInt, x.getString(6), x.getString(7), x.getString(8), x(9).getInt, x.getString(10), x.getString(11), x.getString(12), x.getString(13), x.getString(14), x.getString(15))
                )

但是我得到这个错误:

error: value getInt is not a member of Any
                       (x(0).getString, x.getString(1), x.getString(2), x.getString(3), x(4).getInt, x(5).getInt, x.getString(6), x.getString(7), x.getString(8), x(9).getInt, x.getString(10), x.getString(11), x.getString(12), x.getString(13), x.getString(14), x.getString(15))
                                                                                                          ^

为什么?

我假设是最新版本Spark 2.1.1

首先让我问你一个问题,因为有 DataFrame-based KMeans implementation in Spark.

为什么要将 DataFrame 转换为 RDD[Row] 来执行 KMeans

继续阅读 KMeans in Spark MLlib

我不会这样做,因为 Spark MLlib's RDD-based API is deprecated:

This page documents sections of the MLlib guide for the RDD-based API (the spark.mllib package). Please see the MLlib Main Guide for the DataFrame-based API (the spark.ml package), which is now the primary API for MLlib.


话虽如此,让我们看看您遇到了什么问题。

如果我是你(并无视坚持使用 Spark MLlib 的基于 DataFrame 的建议 API),我会执行以下操作:

// val allDF = allData.toDF()
val allDF = allData.toDS

有了上面的内容,你就会有一个比纯粹的 Row.

工作起来更愉快的 Dataset[CrimeReport]

完成转换后,您可以

val rowsRDD = allDF.rdd.map { x => ... }

其中 x 属于您的类型 CrimeReport,我相信您会知道如何处理它。


直接回答你的问题,错误原因:

error: value getInt is not a member of Any

x(5)(和其他人)属于 Any 类型,因此您必须将其转换为您的类型,或者只需将 x(5) 替换为 x.getInt(5)

查看 Row 的 scaladoc。

当我们在 case class 而不是 double 中处理 String 数据类型时,我们如何使用 kmeans?我的这段代码将无法工作,因为 vector 需要一个双精度值。

// Passing in Crime_Type, Crime_Solved, Perpetrator_Race to KMeans as 
the attributes we want to use to assign the instance to a cluster.

val vectors = allDF.rdd.map(r => Vectors.dense( r.Crime_Type, r.Crime_Solved, r.Perpetrator_Race ))

//KMeans model with 2 clusters and 10 iterations

val kMeansModel = KMeans.train(vectors, 2, 10)

您应该将要在方法 Vector.dense 中使用的属性定义为 int/double

之后,当您将案例 class 映射到文件中的数据时,您应该调用之前定义的函数。正如你在这里看到的:

val data_split = data.map(line => line.split(","))

val allData = data_split.map(p => 
                                CrimeReport(p(0).toString, p(1).toString, p(2).toString, p(3).toString, parseInt(p(4)), parseMonthToNumber(p(5)), p(6).toString, parseSolved(p(7)), parseSex(p(8)), parseInt(p(9)), parseRaceToNumber(p(10)), p(11).toString, p(12).toString, p(13).toString, p(14).toString, p(15).toString))

函数是:

//Filter and Cleaning data      =>    Crime Solved
def parseSolved (solved: String): Int = {
    var result = 0
    solved match {
        case "Yes" => result = 1
        case _ => result = 0
     }
     result
}

或者:

//Parsear   Victim_Race:    String  ===>    Int
def parseRaceToNumber (crType : String) : Int = {
    var result = 0
    val race = crType.split("/")
    race(0) match {
        case "White" => result = 1
        case "Black" => result = 2
        case "Asian" => result = 3
        case "Native American" => result = 4
        case _ => result = 0
    }
    result
}