在函数中使用关键字参数使 n-gram 的生成成为可选的

Using keyword arguments in function to make generation of n-grams optional

我的 xml 文件的外观示例:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="folia.xsl"?>
<FoLiA xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://ilk.uvt.nl/folia" xml:id="untitled" generator="libfolia-v0.10">
  <metadata type="native">
    <annotations>
      <token-annotation annotator="ucto" annotatortype="auto" datetime="2017-04-17T14:50:04" set="tokconfig-nl"/>
      <pos-annotation annotator="frog-mbpos-1.0" annotatortype="auto" datetime="2017-04-17T14:50:04" set="http://ilk.uvt.nl/folia/sets/frog-mbpos-cgn"/>
      <lemma-annotation annotator="frog-mblem-1.1" annotatortype="auto" datetime="2017-04-17T14:50:04" set="http://ilk.uvt.nl/folia/sets/frog-mblem-nl"/>
      <chunking-annotation annotator="frog-chunker-1.0" annotatortype="auto" datetime="2017-04-17T14:50:04" set="http://ilk.uvt.nl/folia/sets/frog-chunker-nl"/>
      <entity-annotation annotator="frog-mwu-1.0" annotatortype="auto" datetime="2017-04-17T14:50:04" set="http://ilk.uvt.nl/folia/sets/frog-mwu-nl"/>
      <entity-annotation annotator="frog-ner-1.0" annotatortype="auto" datetime="2017-04-17T14:50:04" set="http://ilk.uvt.nl/folia/sets/frog-ner-nl"/>
      <morphological-annotation annotator="frog-mbma-1.0" annotatortype="auto" datetime="2017-04-17T14:50:04" set="http://ilk.uvt.nl/folia/sets/frog-mbma-nl"/>
      <dependency-annotation annotator="frog-depparse-1.0" annotatortype="auto" set="http://ilk.uvt.nl/folia/sets/frog-depparse-nl"/>
    </annotations>
  </metadata>
  <text xml:id="untitled.text">
    <p xml:id="untitled.p.1">
      <s xml:id="untitled.p.1.s.1">
        <w xml:id="untitled.p.1.s.1.w.1" class="WORD">
          <t>De</t>
          <pos class="LID(bep,stan,rest)" confidence="0.999701" head="LID">
            <feat class="bep" subset="lwtype"/>
            <feat class="stan" subset="naamval"/>
            <feat class="rest" subset="npagr"/>
          </pos>
          <lemma class="de"/>
          <morphology>
            <morpheme>
              <t offset="0">de</t>
            </morpheme>
          </morphology>
        </w>

我正在制作一个函数,从 xml 文件中生成单字、双字和三字词。我想让 n-gram 可选,这样您就可以选择是想要所有 n-gram 还是只想要 unigram。我的函数的结果是单词 n-gram 的矢量化相对频率。我通过在我的参数中使用关键字参数(使用 True 和 False)来尝试这个。我得到一本空字典,所以我一定做错了什么。这是我所拥有的。有人可以告诉我我做错了什么吗?

import re
import xml.etree.ElementTree as ET

def word_ngrams(frogged_xmlfile, unigrams=True, bigrams=True, trigrams=True):
    vector = {}
    tree = ET.parse(frogged_xmlfile) #enter the xml tree
    root = tree.getroot()
    tokens = []
    words = []
    regex = re.compile(r'[^0-9] |[^(\.|\,|\?|\:|\;|\!)]')
        for node in root.iter('w'):
        for w in node.findall('t'):
            tokens.append(w.text)
    for word in tokens:
        if regex.search(word):
            words.append(word)
    if (unigrams):
        for n in [1]: #unigrams
            grams = ngrams(words, n)
            fdist = FreqDist(grams)
            total = sum(c for g,c in fdist.items())
        for gram, count in fdist.items():
            vector['w'+str(n)+'+'+' '.join(gram)] = count/total

    if (bigrams):
        for n in [2]: #bigrams
            grams = ngrams(tokens, n)
            fdist = FreqDist(grams)
            total = sum(c for g,c in fdist.items())
        for gram, count in fdist.items():
            vector['w'+str(n)+'+'+' '.join(gram)] = count/total

    if (trigrams):
        for n in [3]: #trigrams
            grams = ngrams(tokens, n)
            fdist = FreqDist(grams)
            total = sum(c for g,c in fdist.items())
        for gram, count in fdist.items():
            vector['w'+str(n)+'+'+' '.join(gram)] = count/total
    return vector
print(word_ngrams('romanfragment_frogged.xml', unigrams = True, bigrams = False, trigrams = False))
  1. 您的搜索忽略了文档默认名称space,因此它永远找不到匹配的标签。

  2. 你的正则表达式真的很糟糕 -

    "[^0-9] "                   # not-a-digit, followed by space
    "|"                         # OR
    "[^(\.|\,|\?|\:|\;|\!)]"    # bad syntax, but I think you mean not one of .,?:;!
    

    它将接受任何标点符号后跟 space(作为非数字),或任何数字或其他字符或白色 space(作为非标点符号)!基本上唯一不匹配的是 "a string consisting entirely of punctuation characters".

    我猜你真正想要的是 "a string containing at least one letter and no non-letter characters",但请随时纠正我。

  3. 您的代码不包含 ngrams()FreqDist(),因此我无法对其进行测试。

  4. for gram, count ... 的缩进看起来不正确 - 我认为应该再缩进一层。

  5. 你有很多不必要的重复代码。

试试这个:

# import re
import xml.etree.ElementTree as ET

FOLIA_NAMESPACE = {
    'default': 'http://ilk.uvt.nl/folia',
    'xlink':   'http://www.w3.org/1999/xlink'
}

def is_word(s):
    return s.isalpha()
    # as a regex:
    # return re.match("[A-Za-z]+$", s) is not None

def load_words(folia_xml_file, is_word=is_word, namespace=FOLIA_NAMESPACE):
    root = ET.parse(folia_xml_file).getroot()
    tokens = root.findall(".//default:w/default:t", namespace)
    return [t.text for t in tokens if is_word(t.text)]

def make_ngram_vectors(words, n_values=[1,2,3]):
    vectors = {}
    for n in n_values:
        grams = ngrams(words, n)
        fdist = FreqDist(grams)
        total = sum(count for gram,count in fdist.items())
        for gram,count in fdist.items():
            key = "w{}+{}".format(n, " ".join(gram))
            vectors[key] = count / total
    return vectors

def main():
    words = load_words("romanfragment_frogged.xml")
    vectors = make_ngram_vectors(words, [1])
    print(vectors)

if __name__ == "__main__":
    main()

编辑: 如果您查看 xml 文件顶部的 <FoLiA> 标签,您将看到 xmlns=(link 定义文档的默认名称 space,即有哪些标签可用)和 xmlns:xlink=(备用 XLink 名称space,它定义了 xlink:hrefxlink:show 等标签 - 请参阅 https://www.w3schools.com/xml/xml_xlink.asp)。

ElementTree 喜欢扩展 namespaces 内联,因此您的标签看起来像 {http://ilk.uvt.nl/folia}w。传递 namespace 字典让我们可以使用更易读的格式,例如 default:w

要获得与原始函数相同的 input/output 格式,您可以使用包装函数,例如:

def word_ngrams(folia_xml_file, unigrams=True, bigrams=True, trigrams=True):
    # condense parameters into n_values
    n_values = []
    if unigrams:
        n_values.append(1)
    if bigrams:
        n_values.append(2)
    if trigrams:
        n_values.append(3)
    words = load_words(folia_xml_file)
    return make_ngram_vectors(words, n_values)